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The Morphology of Vesicles of Higher Topological genus’
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ABSTRACT: The equilibrium configuration of fluid — phase phospholipid vesicles in aqueous solutions are controlled by bending elasticity.
We exploited a method for calculating explicitly the stability of arbitrary symmetric shapes. The morphology of lipid vesicles with topological genus
g=2, i.e. with two holes or two handles, is studied. We provided some stable shapes with results explicitly.
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0 Introduction

Lipid is an amphipathic molecule which can be dissolved in an
aqueous envirorment where they self — assemble and form two - di-
mensional bilayers or membranes'*?} . In order to avoid the exposure
of their hydrophobic tails of in water, the membranes formed by the
lipid molecules tends to be closed surfaces or vesicles, which has been
used in the pharmacology, cosmetology, drug carrier, environmental
protecting, detergent development, oil exploiting, and so on. A rich
variety of different shapes of vesicles had been observed under a spe-
cial microscope in the experimentst®-S!,

The assumption that vesicle shapes are determined by the bend-
ing elasticity of the membranes'”*] allow the theoretical study of these
shapm“'"] .

Vesicles can be classified by their topology. The topology of a
vesicle is characterized by its topological genus g which counts the
number of “handles” attached to a sphere to obtain a surface of given
topology. Vesicles with the topology of a sphere, i.e. g = 0, are
most common, However, vesicles with toroidal topology, i.e. g =
1157} and vesicles with two, three and even more "handles” have
been observed experimentally(!® 19

In 1973, the SC (spontaneous curvature) model considering both
asymmetry of the bilayer and the environments was proposed by Hel-
frich™! . In this model, the shape energy is written as

F=%ke§(C.+C2—Q,)2dA+ApIdV+A§dA (1
where k. is an elastic modulus, ¢; and ¢, are two principle curvatures,
cg is the spontaneous 'curvature, Apand A are two Lagrange multipli-
ers that take account of the constraints of constant volume and constant
area. Physically, Ap can be understood as the osmotic pressure differ-
ence and A can be understood as the tensile coefficient. The presence
of the spontaneous curvature serves to describe the effect of asymmetry

of the membrane and/or its environment.
By performing the variations of the above equation, the general

equation was derived'2!]
Ap-22H + k,(2H + G) (2H? - 2K - GoH) + 2KV?H=0
(2)

where the operator V2 = (1/4/g)2;(g/gd))is the Laplace — Beltrami
operator, g is the determinant of the metric g; associated with the first
fundamental form, gi = (g;) ™', H=(C, + G;) is the local mean
curvature, and K = C,(, is the Gaussian curvature. However, It is
hard to resolve the equation analytically. Just the general solution for
cylinder vesicles'?! has been discussed and the other special solutions
including the Clifford torus, the discocyte, and the beyond ~ Delau-
nary surfaces have been studied.

In SC model, by using the scale invanance of the curvature en-
ergy function Eq. (1), the number of parameters can be reduced.
The A is used to define a length scale Ry = +/A/4x, and the reduced
volume v = V/(4/3)nR}, and the reduced curvature ¢y = CoRy. Then
any solutions of Eq. (2) depend only on these two dimensionless
quantities.

1 Tools and methods

In spite of the difficulty in finding the analytical solutions of Eq.
(2), other complex vesicle shapes with genus 2 were found by the
powerful software Surface Evolver ']

The software is based on a discretization of the curvature energy,
area, and volume on a triangulated surface. In this software, the re-
sulting energy is minimized by a gradient descent procedure. The re-
sulting shape is corresponding to a local energy minimum. Further
more, it can calculate the Hessian matrix which is the second varia-
tions of the shape energy. All the shapes below are all calculated by
Hessian matrix and have been evolved for a long time. So they are all
stable shapes.

The energy in Surface Evolver is a combination of a few compo-
nents. These components can be square mean curvature, surface ten-
sion, osmotic pressure difference, and gravitational energy, etc. In
order to search the stable shapes based on spontaneous curvature mod-
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el, the energy function in the software takes the sum of square mean
curvature, surface tension and osmotic pressure.

2 Results and discussion

We fix reduced volumebelow. And at the beginning, we just cal-
culate under ¢y = 0. Two different shapes can be obtained by evalving
different initial shapes [Fig.1].

Fig. 1. Two different stable shapes which all minimize the curvature ener-
gy for F fixed reduced volume v =056 and ¢; =0. (a) The Dy, symmetric
vesicdle shape with energy F=50.526212, Ap= -23.97142, A=6.72141,
m=1,181851, (b) The D,, symmetric shape with energy F=48.809725,
Ap= -21.717202, A =6.055103, m=1.191350.

As shown in Fig. 1, two shapes are of different symmetric proper-
ties. But the biggest differences lie in the energy and reduced integral
of mean curvature. Obviously, in the energy and reduced integral of

mean curvature, the former is higher than the latter when calculating
other reduced volunes within willmore surfaces(V < 0.66) [ Fig 21,
the two kinds of shapes exist stably. One D, symmetric shape has
been observed experimentally Zin SC model, such a shape can be
easily found.

Fig.2 Phase diagram for v - E. A(the bold one)and B have the same
syometry with Fig.1(a), (b), respectively.
B2 MEMNEE, A(EE) BRIUMERE 15 a,bFARFHN
it

Drawn from Fig.2, one can find the energy of the one with Dy, symmetry is
always higher than the one with D, symmetry under the same reduced volume
when keeping ¢ = 0 outside of willmore surface region.

More shapes have been found while we change o0 under [ Fig.3].

Fig.3 Three different shapes with genus 2 under v=052. (a) The shape with ¢;==0.000000, m==1,143488, F=53.076624, Ap= - 26.862336, A =7.
054473; (b) The shape with ¢; = 1.900000, me==1.385660, F=12.506893, Ap= —7.364980, A =1.105188; (c) the shape with ¢, =2.000000, m=1,

417304, F=11.484585, Ap= - 6.570478, A =0.897029.

M3 THENSED 2 EEHTEAER. (a)cy=0.000000, m=1.143488, F=53.076624, Ap = - 26.862336, A =7.054473; A, (b) The
shape withe, = 1,900000, m==1.385660, F=12.506893, Ap= ~7.364980, A =1.105188 AJEiH, (c) the shape withc, = 2.000000, m==1.417304, F=

11.484585, Ap = - 6.570478, A=0.897029 RIEiE.

From Fig.3, one can easily find that two phase transformations occur
when ¢y grows. And the energy decreases with integral mean curva-
ture. So it is interesting to find out whether they are continuous phase
transformations or not, which is within our capability.

3 Conclusion

By building some initial configuration, we can easily find some
interesting shapes. We believe that some of other more complex
shapes can be found by this way. Furthermore each eigenvector of the
Hessian matrix stands for a king of transformation in the configuration

space. A stable shape scan is used in the phase diagram, its nontrivial
eigenvalues are noted down. If one of them crosses 0 or reaches a low-
er value, an bifurcation point or an unstable point occurs, so we can
obtain a more perfect phase diagram in SC model.
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