张淑鹏^{1,2} 李琳琳¹ 木合布力·阿布力孜¹ 王丽凤³ 景兆均⁴ 毛新民^{2,3}

(1新疆医科大学药学院药理教研室 新疆乌鲁木齐830011 2新疆医科大学第一附属医院糖尿病 VIP 实验室 新疆乌鲁木齐830011; 3 新疆医科大学 新疆地方病分子生物学实验室 新疆乌鲁木齐830011; 4 新疆雪菊生物科技有限公司 新疆乌鲁木齐830011)

摘要 目的 :探讨昆仑雪菊提取物对 α - 葡萄糖苷酶的抑制活性。方法 :将昆仑雪菊干燥花序粉碎,分别用水提法和乙醇法制备 5种提取物。采用 α - 葡萄糖苷酶体外活性抑制模型,测定昆仑雪菊的 5种提取物对 α - 葡萄糖苷酶的抑制活性。结果 这 5种提取物对 α - 葡萄糖苷酶活性有较强的抑制作用,抑制活性均高于阿卡波糖。其中提取物 的抑制活性最强 IC50 =28.2 mg/L。结论:昆仑雪菊提取物具有较高的 α - 葡萄糖苷酶抑制活性,提示昆仑雪菊在抗糖尿病产品开发方面具有很好的应用前景。

关键词:昆仑雪菊 p - 葡萄糖苷酶 抑制活性

中图分类号:R285.5 文献标识码:A 文章编号:1673-6273(2011)06-1055-04

Inhibition of Extracts of Coreopsis Tinctoria Flowers from Kunlun Mountain on α -Glucosidase*

ZHANG Shu-peng^{1,2}, LI Lin-lin¹, Mourboul · Ablise¹, WANG Li-feng³, JING Zhao-jun⁴, MAO Xin-min^{2,3,Δ}

(1 Department of Pharmacology, College of Pharmacy, Xinjiang Medical University; 2 VIP Laboratory of Diabetes, First Affiliated Hospital of Xinjiang Medical University; 3 Xinjiang Key Laboratory of Molecular Biology and Endemic Diseases, Xinjiang Medical University; 4 Biological Technology College of Coreopsis tinctoria flowers From The Kunlun Mountain of Xinjiang, Urumqi 830011, China)

ABSTRACT Objective: To investigate the inhibited effect of Coreopsis tinctoria flowers extracts from the Kunlun Mountain on alpha-glycosidase. Methods: The dry inflorescence of Coreopsis tinctoria flowers were crushed, and then five extracts with water and alcohol extraction were prepared, respectively. The inhibitory activity on alpha-glycosidase of the five extracts of Coreopsis tinctoria flowers were identified by vitro activity inhibition models of alpha-glycosidase. Results: The five extracts have higher inhibition activity on alpha-glycosidase than acarbose. Among them, the extract had the most inhibited effect with IC50=28.2mg/L. Conclusion: The extracts have inhibited effect on alpha-glycosidase, which indicated Coreopsis tinctoria flowers had good application prospects in antidiabetic product development.

Key words: Coreopsis tinctoria flowers; α -Glucosidase; Inhibitory activity

Chinese Library Classification(CLC): R285.5 Document code: A

Article ID:1673-6273(2011)06-1055-04

前言

昆仑雪菊为新疆特有植物,学名为两色金鸡菊(Coreopsis tinctoria),属菊科金鸡菊属一年生草本植物,主要分布于和田地区海拔3000米以上的昆仑山^[1]。长期以来,昆仑雪菊被当地居民当花茶引用,新疆维吾尔医院也作为一种维药材应用,具有清热解毒、活血化瘀、和胃健脾之功,用花泡茶饮,可治疗燥热烦渴、高血压、心慌、胃肠不适、食欲不振、痢疾及疮疖肿毒,是具有广阔前景和研究价值的新品种^[23]。康文艺^[4]等研究发现,杭菊、亳菊等七种菊花对α-葡萄糖苷酶具有良好的抑制活性,黄元^[5]等研究发现,某些高寒菊科植物提取物能显著抑制α-葡萄糖苷酶活性。但是昆仑雪菊对α-葡萄糖苷酶的作用尚未见报道,因此本文以α-葡萄糖苷酶为作用靶标,利用α-葡萄

糖苷酶体外抑制模型,探讨昆仑雪菊提取物对 α - 葡萄糖苷酶 的影响,并以阿卡波糖(acarbose)作为阳性对照药物进行比较分析。

1 材料

1.1 药物

昆仑雪菊于 2009 年 10 月采自新疆和田地区昆仑山区,由 新疆雪菊生物科技公司采摘并提供;由新疆医科大学药学院的 胡君萍博士鉴定为菊科金鸡菊品种。

1.2 试剂

α - 葡萄糖苷酶(α -glucosidase,G5003-100UN,美国 Sigma 公司) ;4- 硝基酚 -α -D- 吡喃葡萄糖苷(PNPG,N1337-1G ,美国 Sigma 公司) ,对硝基苯酚(PNP ,美国 Sigma 公司) ,阿卡波糖

作者简介:张淑鹏 (1984-),女,硕士研究生,研究方向为抗糖尿病新药研究,

E-mail zhshpeng521@163.com

△通讯作者:毛新民(1961-)男 教授,研究方向为抗糖尿病新药研究,

Tel:(0991)4365305 E-mail mxm3277@sina.com

(收稿日期 2010-12-02 接受日期 2010-12-25)

^{*}基金项目:自治区重点实验室开放课题基金(XJDX0208-2008-06)

(acarbose 50mg/片 德国拜耳公司 批号 117063)和二甲基亚砜 (DMSO 美国 Sigma 公司) 其他试剂均为国产分析纯。

1.3 主要仪器

RE-52A 旋转蒸发仪器(上海亚荣生化仪器厂);水浴锅,循 环水式真空泵;干燥箱、Coda全自动酶标仪(法国 Bio-Rad 公 司) HI3221 型 PH 计(HANNA) Exceed-cd-16 型纯水仪(台湾 艾柯) :电子天平(梅特勒-托利多仪器有限公司) 96 微孔板; 各种移液枪及枪头等。

2 方法

2.1 昆仑雪菊的提取

将昆仑雪菊干燥花序粉碎,取 10g ,用乙醇提取,减压浓缩 成膏 得提取物 I。另取药材 10g 用水提取 浓缩 用 Sevag 法 除去蛋白 取上清液用氯仿萃取,减压浓缩干燥,得提取物 II :水 层加乙醇至醇浓度达 80% 沉淀 ,得提取物 III :醇水层减压浓 缩至干 得提取物 IV。另取药材 10g 按皂苷的分离方法用水提 取 浓缩后用正丁醇萃取 正丁醇层减压浓缩成膏 将提取物用 甲醇溶解 ,丙酮沉淀 .得提取物 V。各种提取物的提取率见表 1 0

2.2 α - 糖苷酶抑制活性的筛选方法

2.2.1 α - 葡萄糖苷酶活力的测定 酶活力单位定义为 37 ℃、 pH = 6.8 条件下, 每分钟水解底物产生 1 µ mol 对硝基苯酚的 酶量,定义为一个酶活力单位(U)。酶活力测定: 112 µ L 磷酸钾 缓冲液 (pH=6.8), 加入 0.2 U/mL α - 葡萄糖苷酶溶液 20 μ L, DMSO 8 µ L, 37 ℃ 恒温 15 min 后加入 2.5 mmol/L PNPG 20 μ L, 37 ℃ 恒温反应 15 min。再加入 0.2 mol/L 的 Na₂CO₃ 水溶 液 80 µ L,于 405 nm 波长下测 OD 值。

2.2.2 标准曲线制作 根据采用的反应体系,用磷酸钾缓冲液 (pH = 6.8) 配制 1000 µ mol/L PNP, 稀释成 400、300、200、150、 100、50 和 0 µ mol/L 7 种不同浓度, 取这 7 种 PNP 溶液 160 μ L, 加入 0.2 mol/L Na₂CO₃ 的水溶液 80 μ L,混匀,在 405 nm 下测定 OD 值,测 3 组取算术平均值。以 OD 值为纵坐标,对硝 基苯酚浓度为横坐标,做出标准曲线。

2.2.3 α - 葡萄糖苷酶抑制活性的检测 参考文献[68]建立的 96 微孔板筛选方法 测定组(Ati):112 µ L 磷酸钾缓冲液,加入 0.2 U/mL α - 葡萄糖苷酶溶液 20μ L,DMSO 8 μ L,加入 50 μ L 的 抑制剂 (待测提取物) 37 ℃ 恒温 15 min 后加入 2.5 mmol/L PNPG 20 µ L, 37 ℃ 恒温反应 15 min。再加入 0.2 mol/L 的 Na₂CO₃ 水溶液 80 µ L,于 405 nm 波长下测 OD 值。

同时做相同体系下,体系空白组(Ab):相对于测定组不加 抑制剂和 α-葡萄糖苷酶,其余相同;未加抑制剂测试组 (At0):相对于测定组不加抑制剂,其余相同;未加酶空白组 (Abi) 相对于测定组不加 α - 葡萄糖苷酶 ,其余相同。均用蒸 馏水作空白 在 405 nm 处分别测定 OD 值。

抑制率 = (未加抑制剂测试组酶活吸光度变化值 - 加抑制 剂后酶活吸光度变化值)/ 酶活吸光度变化值× 100%。并用 Origin 软件求出相应半数抑制质量浓度 IC 50 值。抑制率 (%)= $(\triangle A-\triangle AEi)/\triangle A \times 100\%$ 。 $\triangle A=$ 未加酶抑制剂与底物反应后的 吸光度变化值(At0-Ab); △AEi=加入酶抑制剂后与底物反应后 的吸光度变化值[(Ati-Ab)-(Abi-Ab)]。

3 结果

3.1 阿卡波糖对α-葡萄糖苷酶的抑制活性

在不同浓度的阿卡波糖的作用下 ,阿卡波糖对 α - 葡萄糖 苷酶的抑制作用具有良好的量效关系,其抑制曲线见图 1,说 明本实验 α - 葡萄糖苷酶体外抑制模型符合此次实验的需要。

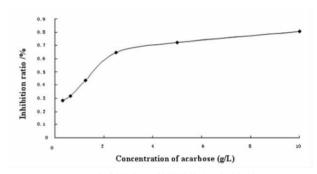


图 1 阿卡波糖对 α - 葡萄糖苷酶的抑制活性

Fig. 1 Inhibition of acarbose on α -glucosidase activity

3.2 不同提取物的活性比较分析

结果见表 1 和图 2。昆仑雪菊 5 种提取物的提取率高低顺 序依次为:提取物 >提取物 >提取物 >提取物 >提取 物 。这 5 种提取物对 α - 葡萄糖苷酶的抑制率均高于阿卡波 糖,且抑制率高于90%的有4个。而且昆仑雪菊提取物 对α-葡萄糖苷酶的抑制活性最好 远高于阳性对照药物 acarbose。

表 1 昆仑雪菊的提取物对 α - 葡萄糖苷酶的抑制活性

Table 1 Inhibition of Coreopsis tinctoria flowers extracts from the Kunlun Mountain on α -glucosidase activity

	组别 Group		样品提取率 /% extraction ratio of sample	提取物质量浓度 /(g/L) extract mass concentration	对 α - 葡萄糖苷酶抑制率 /% inhibition ratio of α -glucosidase activity	半数抑制质量浓度 IC50/ (mg/L) 50%inhibiting concentration
提取物	(extraction)	25.50	0.1	103.00	28.2
提取物	(extraction)	0.20	0.1	91.83	63.6
提取物	(extraction)	10.00	0.2	91.68	31.4
提取物	(extraction)	15.50	1.5	85.56	71.8
提取物	(extraction)	0.50	0.075	96.94	546.0
阿卡波糖(acarbose)				1.5	73.63	747.6

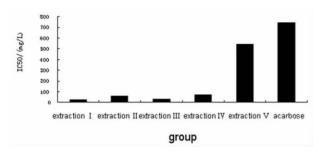


图 2 不同提取物 α - 葡萄糖苷酶的抑制活性

Fig. 2 Inhibition of extracts on α -glucosidase activity

图 2 显示,评价活性时采用半数抑制质量浓度(IC50 值) 作为指标,这5种提取物的IC50值均低于阿卡波糖,且小于 100 mg/L 的有 4 种 其中昆仑雪菊提取物 的 IC50 值值最小, 则抑制活性最高,提取物 的 IC50 值为 546.0 mg/L 接近于阿 卡波糖的 IC50 值。提示昆仑雪菊的不同溶剂提取物对植物活 性有影响,可以从昆仑雪菊提取物 中分离有效单体化合物, 可能比其他4种提取物更适合应用于糖尿病药物的开发。

3.3 不同提取物对 α - 葡萄糖苷酶的抑制活性

结果见图 3A 和 3B。昆仑雪菊的 5 种提取物的 a- 葡萄糖 苷酶抑制活性均随质量浓度增加而增长,呈剂量依赖性。图 3A 显示 ,昆仑雪菊提取物 、提取物 和提取物 的抑制率在 浓度小于 0.1 g/L 时 随质量浓度的增大而呈线性增加。其中当 这 3 种提取物的质量浓度都为 0.05 g/L 提取物 的 a- 葡萄糖 苷酶抑制活性最高 提取物 和提取物 的抑制活性相似。而 提取物 的质量浓度为 0.1 g/L 时 ,抑制率超过 100% ,当质量 浓度继续增大时 需要进一步研究。

图 3B 显示, 昆仑雪菊提取物 质量浓度在 1 g/L 以内增 大时,抑制率上升很快,提示,此提取物的 a- 葡萄糖苷酶抑制 活性随浓度的变化很大,当作为药物开发利用时,应选择最适 浓度。提取物 的质量浓度在 2 g/L 以内增大时 抑制率上升趋 势比较缓慢 占 acarbose 相似。acarbose 质量浓度为 2.5 g/L 抑 制率为 74.50%时基本达到一个 " 平台期 " /继续增大浓度抑制 率增长很小。当提取物 质量浓度大于 2 g/L 时 抑制率可能会 高于 acarbose ,而且此提取物有良好的水溶性 ,具有很好的开 发价值。

4 讨论

α-葡萄糖苷酶是一种在机体的代谢过程中起着关键作用 的酶, 它能使复合碳水化合物分解成为可被人体吸收的单糖^图。 α-葡萄糖苷酶抑制剂能通过抑制该酶的活性,延缓糖类的吸 收,可有效降低餐后血糖浓度峰值,提高糖耐量,预防并改善糖 尿病及其并发症的发生和发展[10]。

临床上应用的 α - 葡萄糖苷酶抑制剂类药物主要是:阿卡 波糖、伏格列波糖和米格列醇四。但阿卡波糖等均为西药,口服 时存在恶心、呕吐等胃肠道不良反应 因此,越来越多的学者开 始青睐于从药用植物中筛选天然的 α-葡萄糖苷酶抑制剂,以 期寻找到安全、有效的药物[12]。目前发现了许多天然的 α - 葡萄 糖苷酶抑制剂,按结构大致可分为:黄酮类、生物碱类、皂苷 类[13]。

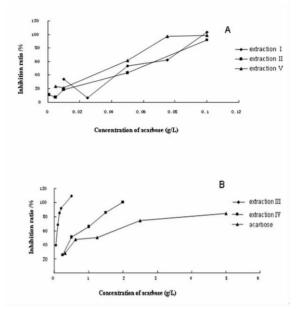


图 3 不同提取物浓度对 α - 葡萄糖苷酶活性的影响

Fig. 3 Mass concentration of extracts effect on inhibitory activity of α -glucosidase

赵元[4]等对糖尿病验方中 14 味中药的 α - 葡萄糖苷酶抑 制活性进行了初步筛选 发现地榆多糖可以显著抑制 α - 葡萄 糖苷酶活性。司晓晶四等从治疗糖尿病的药方中选出常用 52 种中药发现桑枝、覆盆子、桑白皮等中药的水煎煮后乙醇提取 物对 α - 葡萄糖苷酶均有很高的抑制作用。

新疆蕴含着丰富的昆仑雪菊植物资源 它们中存在着多种 具有特殊生物活性的物质 因而从中不仅能发现许多有实用价 值的化合物 而且能为新药的研究开发提供新的思路。因此 本 实验以α-葡萄糖苷酶为作用靶点,采用α-葡萄糖苷酶体外 筛选模型, 对昆仑雪菊的 5 种提取物的 α - 葡萄糖苷酶抑制活 性进行了观察。结果表明这 5 种提取物均具有一定的 α - 葡萄 糖苷酶抑制活性,且抑制活性均高于阿卡波糖。同时本课题组 动物实验表明,昆仑雪菊水提物灌胃能提高大鼠胰岛素敏感 性 改善胰岛素抵抗和血脂紊乱 具有较好的降糖作用。综上, 此实验为研究昆仑雪菊 α - 葡萄糖苷酶抑制剂提供了理论依 据,为防治糖尿病新疆特有植物昆仑雪菊的进一步开发提供了 很好的参考价值。

参考文献(References)

- [1] 木合布力·阿布力孜 涨燕 景兆均 毛新民.新疆昆仑雪菊化学成分 的初步定性研究[J].新疆医科大学学报,2010,33(6):628-630 MOURBOUL · Ablise, Zhang Yan, Jing Zhao-jun, et al. Chemical constituents of Coreopsis tinctoria flowers from the Kunlun Mountain in Xinjiang [J]. Journal of Xinjiang Medical University, 2010,33(6): 628-630
- [2] 吴春霞,马厉芳,阿不都拉·阿巴斯.小甘菊花有效成分的初步研究 [J].食品科学 2007,28(5):287-289 Wu Chun-xia, Ma Li-fang, ABASE · Abudola. Small chrysanthemum preliminary study of effective ingredients [J]. Food Science, 2007,28 (5):287-289
- [3] 刘伟新,邓继华,徐鸿.一种金鸡菊花的生药研究[J].中国民族医药杂 志 2009,1:24-25

- Liu Wei-xin, Deng Ji-hua, Xu Hong. Crude drug research of one species of Coreopsis tinctoria[J]. 2009, 1:24-25
- [4] 康文艺, 张丽, 宋艳丽.滇丁香中抑制 α 葡萄糖苷酶活性成分研究 [J].中国中药杂志,2009,34(4):406-409 Kang Wen-yi, Zhang Li, Song Yan-li. α -Glucosidase inhibitors from Luculia pinciana [J]. China Journal of Chinese Materia Medica, 2009,34(4):406-409
- [5] 黄元 ,陈睿 ,马继雄 ,等.高寒菊科植物提取物中 α 葡萄糖苷酶抑制剂的筛选[J]. 中国药科大学学报,2008,39(6):566-569 Huang Yuan, Chen Rui, Ma Ji-xiong, et al. Screening of alpha-glucosidase inhibitors from the alpine Compositae herb extracts[J]. Journal of China Pharmaceutical University, 2008,39(6):566-569
- [6] Li Ting, Zhang Xiao-dong, Song Yu-wen, et al. A microplate-based screening method for alpha-glucosidase inhibitors [J]. Chin J Clin Pharmacol Ther, 2005,10(10):1129

[7] 张丽,李彩芳,李晓梅,等.加拿大蓬 α - 葡萄糖苷酶抑制作用[J].河南

- 大学学报:医学版,2008,27(4):39-41

 Zhang Li, Li Cai-fang, Li Xiao-mei, et al. Inhibition of alpha-gluco-side of Erigeron Canadensis L.[J]. Journal of Henan University(Medical Science),2008,27(4):39-41
- [8] 康文艺, 张丽, 张倩. 黄连提取物对 α 葡萄糖苷酶抑制作用研究 [J].天然产物研究与开发,2009,21: 992-994, 1014

 Kang Wen-yi, Zhang Li, Zhang Qian. α -Glucosidase Inhibitory Activity of Extracts of Coptischinensis.[J]. Prod Res Dev, 2009, 21: 992-994, 1014
- [9] 李晨岚,王大鹏,蔡兵,等.黄杞叶提取物降血糖作用的研究[J].中草药,2008,39(11):1696-1698
 Li Chen-lan, Wang Da-peng, Cai Bing, et al. The extract of Engelhardtia roxburghiana wall leaf on lowers blood glucose research [J].
 Chinese Traditional and Herbal Drugs, 2008,39(11):1696-1698
- [10] 付燕, 胡本容, 汤强, 等. 药根碱、小檗碱、黄连煎剂及模拟方对小鼠

- 血糖的影响[J].中草药,2005,36(4):549-551
- Fu Yan, Hu Ben-rong, Tang Qiang, et al. Effect of jatrorrhizine, berberine, Huanglian Decoction and compound-mimic prescription on blood glucose in mice[J]. Chinese Tradit -ional and Herbal Drugs, 2005,36(4):549-551
- [11] 王翼, 张旭. α 葡萄糖苷酶抑制剂的研究进展 [J]. 海峡药学, 2009,21(9):4-5
 - Wang Yi, Zhang Xu. Progress on research of alpha-glucosidase inhibitors [J]. Strait Pharmaceutical Journal, 2009, 21(9):4-5
- [12] 冯长根,陈凌,刘霞.以中草药为来源的 α 葡萄糖苷酶抑制剂筛选研究进展[J].中国新药杂志,2005,14(6):669-672
 Feng Chang-gen, Chen Ling, Liu Xia, Progress on research of α -glucosidase inhibitor from herbal medicines. Chinese Journal of New Drugs, 2005,14(6):669-672
- [13] 季芳,肖国春,董莉,等.药用植物来源的 α 葡萄糖苷酶抑制剂研究 进展[J].中国中药杂志,2010,35(12):1633-1640

 Ji Fang, Xiao Guo-chun, Dong Li, et al. Developmen t of α -glucosidase inhibitor from medicinal herbs[J]. China Journal of Chinese Materia Medica, 2010,35(12):1633-1640
- [14] 赵元,张莲英,胡晓燕,等.1 种新的天然 α 葡萄糖苷酶抑制剂的分离纯化及其活性测定[J]. 中国生化药物杂志,2007,28(1):20-22 Zhao Yuan, Zhang Lian-ying, Hu Xiao-yan, et al. Purif ication and activity of a new natural a-glucosidase inhibitor [J]. Chinese Journal of Biochemical Pharmaceutics, 2007,28(1):20-22
- [15] 司晓晶, 霍世欣,施雅.中药提取物对酵母和鼠肠 α 葡萄糖苷酶的抑制作用[J]. 上海大学学报(自然科学版),2009,15(4):432-435 Si Xiao-jing, Huo Shi-xin, Shi Ya. Inhibition of Traditiona 1 ChineseMedic ine Extracts onα -Glucosidase from Yeast and Rat Intestines [J]. Journal of shanghai university (natural science), 2009,15 (4):432-435