doi: 10.13241/j.cnki.pmb.2018.17.005

竹节参皂苷 IVa 通过 Akt/mTOR 通路保护胰岛 β 细胞损伤 *

崔 佳 段佳林 王 磊[△] 曹珊珊 贾 娜 文爱东 (空军军医大学第一附属医院药剂科 陕西西安 710032)

摘要 目的:研究付节参皂苷 IVa(CHS)对高糖诱导的胰岛 β 细胞损伤的保护作用及其作用机制。方法:采用高糖建立胰岛 β 细胞 损伤模型,分为正常组、模型组、CHS 给药低、中和高剂量组(25、50 和 100 μM)。MTT 法检测 CHS 对胰岛细胞存活率的影响,胰 岛素释放实验检测 CHS 对胰岛 β 细胞功能的影响,试剂盒检测 Caspase 3 和细胞色素 c 的水平,蛋白印迹法检测 Bax、Bcl-2、 Akt、mTORC1、S6K 蛋白表达和磷酸化水平变化。结果:与正常组比较,高糖使 INS-1 细胞存活率降低,胰岛素释放减少,同时 Caspase-3,细胞色素 c,Bax 蛋白表达增加,Bcl-2 蛋白表达减少;与模型组比较,CHS 可以明显逆转这一趋势(P<0.05)。此外,CHS 可剂量依赖性的促进 Akt,mTORC1 和 S6K 磷酸化水平,进一步研究发现,CHS 保护胰岛 INS-1 细胞的作用及对 mTORC1 和 S6K 磷酸化的作用被 siAkt 抵消。结论:CHS 可以对抗胰岛 β 细胞的糖毒性,降低胰岛 INS-1 细胞凋亡,增加胰岛素释放水平,其 作用机制可能与激活 Akt/mTOR 信号通路有关。

关键词: 付节参皂苷 IVa; 葡萄糖毒性; Akt/mTOR; 胰岛素释放 中图分类号: R-33; R285.5; R587 文献标识码: A 文章编号: 1673-6273(2018)17-3224-06

Protective Effects of Chikusetsu Saponin IVa on Pancreatic β Cells Injuryed by High Glucose*

CUI Jia, DUAN Jia-lin, WANG Lei^A, CAO Shan-shan, JIA Na, WEN Ai-dong

(Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China)

ABSTRACT Objective: To investigate the protective effects of Chikusetsu saponin IV a on islet β cells injured by high glucose. **Methods:** High glucose was used to induce injury in islet β cells, and divided into Control, Model, low, middle and high treatment groups (25, 50 and 100 μ M). MTT was used to measure the effect of CHS on cells survival rate. Insulin release assay experiment was used to detect the insulin release effect of CHS on islet β cell function. Caspase 3 and cytochrome c levels were measured by the kit, the expression of Bax and Bcl-2 were measured by western blotting, and also the phosphorylation levels of Akt, mTROC1 and S6K. **Results:** Compared with the model group, CHS significantly increased the survival rate, induced the releasing level of insulin, decreased the ex- pression of Caspase-3, cytochrome c and Bax, increased the expression of Bcl-2, and also raised the ratio of Bcl-2/Bax (P<0.05). Addi- tionally, CHS could increase the phosphorylation levels of Akt, mTROC1 and S6K in a dose dependent manner. In further studies, we found that the protective effects of CHS and the effect of inducing mTROC1 and S6K phosphorylation were all abolished by siAkt. **Conclusion:** CHS protected cells from cell injury caused by high glucose, decreased cell apoptosis, increased insulin release levels. The possible mechanism might through activating Akt/mTOR signaling pathway.

Key words: Chikusetsu saponin IVa; Glucose toxicity; Akt/mTOR; Insulin release

Chinese Library Classification(CLC): R-33; R285.5; R587 Document code: A Article ID: 1673-6273(2018)17-3224-06

前言

糖尿病是严重威胁人类健康的慢性疾病之一,胰岛β细胞 功能受损是糖尿病发生发展的关键环节^[1]。体内长期的高血糖 将会诱导细胞的一系列反应(包括氧化应激、炎症等),进一步 加速胰岛细胞凋亡,使胰岛细胞功能进一步受损,形成恶性循 环^[23]。已成为2型糖尿病发生发展的最重要的生理病理改变, 也是2型糖尿病胰岛β细胞衰竭的重要机制^[4]。因此,寻找以 保护高糖诱导的胰岛细胞损伤为治疗药物,将对开发新型糖尿 病治疗药物具有积极意义。磷脂酰肌醇3激酶/蛋白激酶B/ 雷帕霉素靶蛋白(PI3K/Akt/mTOR)信号通路是发挥胰岛保护 功能的主要信号通路之一,在多种因素的影响下发挥对细胞的 调控作用,并在胰岛的功能和存活等环节发挥重要作用¹⁵⁶。太 白楤木常用于治疗消渴症以及其他代谢性疾病,进一步的成分 分析发现,竹节参皂苷 IVa (Chikusetsu Saponin IVa,CHS)是其 最主要的活性成分之一^[7]。前期的研究发现,CHS 具有很好的

^{*}基金项目:国家自然科学基金项目(81603350);陕西省中医药管理局项目(JCMS056);西京医院助推计划项目(XJZT15M19)

作者简介:崔佳(1986-),硕士,药师,主要研究方向:中药药理学,E-mail: cuijia2008@163.com

[△] 通讯作者:王磊,主管药师,E-mail: wangle1112008@163.com

⁽收稿日期:2018-04-09 接受日期:2018-05-04)

抗氧化、抗糖基化活性,并在体外细胞实验中发现其具有良好的促胰岛素分泌能力,是潜在的糖尿病治疗药物。但 CHS 是否能够保护高糖诱导的胰岛细胞损伤还未见报道^[8-10]。本实验拟于胰岛β细胞中探讨 CHS 对抗葡萄糖毒性保护胰岛β细胞的作用机制。

1 材料与方法

1.1 实验材料

1.1.1 实验细胞INS-1 大鼠胰岛素瘤细胞购自于美国American Type Culture Collection 公司(Manassas, VA, USA)。

1.1.2 **实验试剂与药物** 竹节参皂苷 IVa(纯度≥ 98%)由第四 军医大学第一附属医院新药研发中心提供,批号:20140214。 RPMI-1640 培养基、胎牛血清购于 Gibco; 雷帕霉素和噻唑蓝 (MTT)购于 Sigma;胰岛素 ELISA 试剂盒购自瑞典 Mercodia 公司;P-Akt、Akt、Bax、Bcl-2、P-mTOR、mTOR、S6K、P-S6K 和 β-actin 抗体由 Santa Cruz Biotechnology 公司提供;siAkt 转染 试剂盒购自 Santa Cruz Biotechnology 公司;Western Blot 相关 试剂盒,购自北京鼎国昌盛生物技术有限公司;辣根过氧化物 酶标记的二抗购自武汉博士德生物工程有限公司;ECL 化学发 光试剂盒购自于 Roche 公司;其他试剂均由 Sigma 公司提供。

1.2 方法

1.2.1 INS-1 大鼠胰岛素瘤细胞培养及分组 INS-1 细胞于 37℃、5% CO₂培养箱中培养, RPMI-1640 完全培养基(含 10% 胎牛血清、1%双抗)中培养,每 24 h 更换 1 次培养液,用 0.25% 胰酶消化传代培养,待细胞到长满瓶壁 70%后接种细胞培养 板。将细胞分为对照组(Con):培养液中含 5 mmol/L 葡萄糖;高 糖损伤模型组(Mod):培养液中含 33 mmol/L 葡萄糖;CHS 低 剂量组(25 μM):用 25 μM CHS 预处理细胞,然后高糖诱导损 伤;CHS 中剂量组(50 μM):用 50 μM CHS 预处理细胞,然后 高糖诱导损伤;CHS 高剂量组(100 μM):用 100 μM CHS 预处 理细胞,然后高糖诱导损伤。

1.2.2 MTT 比色法检测细胞增殖率 各实验组细胞分别设置 5 个复孔,将 INS-1 细胞制成细胞悬液,以 5×10⁴ 的浓度接种 细胞培养板,于 37℃的 CO₂培养箱中培养 24 h,不同浓度的 CHS 处理 24 h 后加入 MTT(5 g/L)20 μL,继续培养 4 h 后吸净 培养板中的培养液后加入 150 mL 的二甲基亚砜,轻震后于酶 标仪 492 nm 处检测各孔的吸光度值(A),计算细胞生长存活 率。根据实验结果选取对 INS-1 细胞影响最小的两个剂量观察 低、中、高剂量的 CHS 对高糖损伤的胰岛 INS-1 细胞生存率的 影响。

1.2.3 胰岛素释放的含量测定 以 2× 10⁵ 的胰岛 INS-1 细胞 接种于 48 孔细胞培养板,培养过夜后吸去上清液,用不含葡萄 糖的培养基孵育 2 h 后用不同剂量的 CHS 于 37℃处理 1 h,吸 取上清液,放射免疫法检测不同处理组胰岛素的含量。

1.2.4 Caspase 3 的含量测定 胰岛 INS-1 细胞经过不同处理 后,吸取上清弃去,胰酶消化收集细胞,加入细胞裂解液,冰水 浴上裂解 20 min,4℃,20000×g 离心 10 min 后收集上清液。采 用 BCA 蛋白测定试剂盒测定蛋白的浓度。依据试剂盒说明书 加入各个反应液并孵育,405 nm 处测定吸光度值。计算单位重 量的蛋白中含有 Caspase 3 的酶活力单位。

1.2.5 细胞色素 c 的含量测定 细胞中的细胞色素 c 含量采用 Elisa 试剂盒测定。胰岛 INS-1 细胞经过不同处理后,用 PBS 溶液洗 3 次,胰酶消化收集细胞,通过反复冻融使细胞内的成分释放出来,并在 1500×g 离心 20 min 后收集上清液,依据试剂盒说明书操作测定细胞色素 c 含量。

1.2.6 Western blotting 实验 裂解缓冲液裂解提取胰岛 INS-1 细胞蛋白, BCA 法进行蛋白定量后, 于-70 ℃冰箱中保存备用。 实验时,向此蛋白样品中加入等体积的 2× 电泳样品缓冲液后 加热变性,每泳道按 30 μg 上样,10% SDS-PAGE 后,电转至 PVDF 膜上。常温下,用 5%的脱脂奶粉封闭并震荡 1 h,而后加 入 Bcl-2, Bax 和 Akt 单克隆抗体,加用辣根过氧化物酶标记的 羊抗兔 IgG,应用 ECL 试剂盒进行显影并定影。以β-actin 作为 内参照物。目的条带和上样内参的积分光密度值用 Quantity One software 测定后,比较后得出相对光密度值。

1.3 数据处理

数据以均数±标准差(mean±SD)来表示,采用SPSS18.0 统计软件进行分析。多组间比较采用单因素方差分析,两两比 较应用LSD-t检验,P<0.05表示差异具有统计学意义。

2 结果

2.1 CHS 对胰岛 INS-1 细胞活性的影响

如图 1A 所示,与空白组比较,模型组细胞存活率被高糖 处理显著降低(P<0.05),表明高糖造成存活率下降。与模型组 比较,CHS 给药组存活率显著升高,其中 25 μM 组升高 17% (P<0.05),50 μM 组升高 28%(P<0.05),100 μM 组升高 40% (P<0.05),表明并呈剂量依赖关系(P<0.05)。

如图 1B 所示,与空白组比较,模型组细胞 LDH 泄漏率明 显增加,表明高糖造成细胞膜损伤;而与模型组比较,CHS 给药 组 LDH 泄漏率明显降低(P<0.05),并呈明显的剂量依赖关系。 2.2 CHS 对胰岛 INS-1 细胞胰岛素水平的影响

与正常组比较,33 mM 葡萄糖处理的 INS-1 细胞,16 mM 诱导的胰岛素释放量显著降低(P<0.05),而 CHS 预处理组,胰岛素释放水平明显增加,且差异具有明显的统计学意义(图 2A)。我们还测定了胰岛素 mRNA 含量,结果同样表明 CHS 可以增加细胞内 mRNA 水平(图 2B)。

2.3 CHS 对胰岛 INS-1 细胞凋亡水平的影响

与正常组比较,高糖导致胰岛 INS-1 细胞内 caspase 3 和细胞色素 c 水平明显升高,CHS 预处理组,caspase 3 和细胞色素 c 水平则明显降低,并呈剂量依赖性减少(图 3A)。此外,我们还 发现,高糖损伤使 Bax/Bcl-2 比例明显增加,不同浓度的 CHS 处理使比值呈剂量依赖性降低(图 3B)。

2.4 CHS 促进 Akt 蛋白磷酸化

为了研究 CHS 保护胰岛β 细胞葡萄糖损伤的作用机制, 我们研究了不同剂量的 CHS 对 Akt 磷酸化情况水平的影响。 如图 4A 所示,与正常对照组相比,高糖使胰岛 INS-1 细胞 p-Akt 水平明显降低,而 CHS 处理组 p-Akt 水平较模型组明显 升高,且呈现剂量依赖性关系(图 4A)。进一步研究 Akt 信号通 路在 CHS 保护胰岛 INS-1 细胞中的关键性作用,我们发现,应 用 siRNA 抑制 Akt 后,CHS 对胰岛细胞的保护作用显著降低 (图 4B),促进胰岛素释放的活性明显下降(图 4C)。

A 竹节参皂苷 IVa 对高糖损伤的胰岛细胞存活率的作用;B 竹节参皂苷 IVa 对高糖损伤的胰岛胰岛细胞 LDH 漏出率的影响。

##P<0.01 vs control 组,**P<0.01 vs model 组。

Fig.1 Effects of CHS on islet cells viability

A Effects of CHS on high glucose injured cell viability; B Effects of CHS on high glucose induced LDH leakage. #P<0.01 vs control group, **P<0.01 vs model group.

^{##}P<0.01 vs control 组,**P<0.01 vs model 组。

Fig.2 Effects of CHS on insulin release and insulin mRNA levels in islets cells A Effects of CHS on insulin release levels. B Effects of CHS on insulin mRNA levels in islets cells.

#P<0.01 vs control group, **P<0.01 vs model group.

2.5 CHS 通过 Akt 调节 mTOR 信号通路

mTOR 信号通路在胰岛损伤过程中扮演重要角色,因此我 们检测了 CHS 对 mTOR 信号通路的影响。如图 5A 所示,与正 常组比较,模型组 P-mTORC1 和 P-S6K 水平均显著降低(P <0. 05); 与模型组比较,CHS 预处理组 P-mTORC1 和 P-S6K 水平 均显著增加。雷帕霉素(rapamycin,RAP)为 mTOR 信号通路的 特异性抑制剂,与 CHS 共同作用于细胞,观察 CHS 的作用。结 果发现,阻断 mTOR 后,CHS 的保护作用减弱(图 5B)。同时, 与 CHS 组比较,SiAkt+CHS 组,P-mTORC1 和 P-S6K 水平显著 降低(图 5C)。

3 讨论

随着物质生活水平的变化,糖尿病的发病率与日俱增,糖 尿病及其并发症已成为全球面临的共同健康问题。中国糖尿病 占全球总糖尿病患者的1/3,而且这一比例在逐年增加,中国已 成为糖尿病及其并发症的重灾区^[11]。糖尿病包括1型糖尿病和 2型糖尿病,其中2型糖尿病占糖尿病总人群95%以上,其具 有患病率高,起病隐匿,早期症状不明显等特点,严重威胁人类 健康^[12]。因此,针对2型糖尿病的发病机制,开发新型治疗药物 对于解决这一问题尤为重要。

胰岛素抵抗和胰岛β细胞功能受损是2型糖尿病发病的 关键环节,β细胞功能的恶化在2型糖尿病的发生发展中发挥 着决定性作用,其中胰岛β细胞的凋亡是造成胰岛素分泌不足 的重要原因^[13,14]。糖尿病患者体内血糖一直处于较高水平,长期 的高血糖状态将直接损伤胰岛β细胞,进一步增加体内胰岛素 抵抗,导致胰岛素释放降低,血糖水平进一步上升,这样的恶性 循环被称为葡萄糖毒性^[15]。葡萄糖毒性是导致2型糖尿病胰岛 β细胞功能进行性减退的最重要原因之一,其可损害胰岛β细 胞内胰岛素相关基因的表达、胰岛素分泌和细胞生存能力^[16]。 糖毒性尤其是长期的高糖刺激胰岛β细胞会诱发内质网应激、

图 3 竹节参皂苷 IVa 对胰岛细胞凋亡水平的影响

Fig.3 Effects of CHS on the apoptosis of islet cells

A Effects of CHS on caspase 3 levels in cells; B Effects of CHS on cytochrome C levels in cells; C Effects of CHS on the protein expression levels of Bcl-2 and Bax. ##P<0.01 vs control group, *P<0.05, **P<0.01 vs model group.

A Effects of CHS on Akt phosphorylation; B Effects of CHS on cell viability after Akt knockdown by siRNA; C Effects of CHS on insulin release levels after Akt knockdown by siRNA. #P<0.01 vs control group, *P<0.05, **P<0.01 vs model group, & P<0.01 vs CHS group.

A Effects of CHS on mTORC1 phosphorylation; B Effects of CHS on S6K phosphorylation; C Effects of CHS on insulin release levels after mTOR was inhibited by rapamycin (RAP); D Effects of CHS on mTORC1 and S6K phosphorylation after Akt knockdown by siRNA. ##P<0.01 vs control group, *P<0.05, **P<0.01 vs model group, **P<0.01 vs CHS group.

线粒体功能失调、氧化应激、炎症、糖基化终末产物形成增加, 最终导致细胞凋亡,胰岛素释放水平降低¹⁷⁷。本实验同样观察 到,高糖(33mM)会导致细胞存活率下降,LDH释放水平增加, 促进凋亡蛋白(细胞色素 c,caspase 3 和 Bax)的表达,抑制 Bcl-2 表达,表明高糖会诱导细胞凋亡,从而损伤β细胞的胰岛 素分泌功能。而 CHS 预处理则可以保护β细胞,减轻高糖造成 的损伤程度,回复β细胞胰岛素分泌能力。

PI3K/Akt 信号通路在细胞的增殖、分化、周期、凋亡等过程 中均具有重要的调控作用。Akt 能够激活细胞周期蛋白 CDK4 和 CDK2,诱导细胞 DNA 合成,使细胞进入 S 期,从而促进细 胞分化¹⁸⁸。此外,Akt 能够通过糖原合酶激酶 3(GSK-3)调节 CDK/cyclin 复合物的形成以及 CDK 的抑制因子 P21 和 P27 的表达,从而影响细胞的增殖和分化¹⁹⁹。Bad(Bcl-2 antagonist of cell death)是 Bcl-2 家族一员,促进细胞凋亡。正常情况下,定 位于细胞质,在受到刺激时,比如高糖刺激,Bad 可以使结合在 Bcl-2 或 Bcl-xl 上的 Bax 游离,从而诱导凋亡的发生。Bad 的促 凋亡活性与其三个磷酸化位点(Ser112,Ser136 和 Ser155)相关 ^[20]。而活化的 Akt 蛋白可以使凋亡蛋白 Bad 的 Ser136 位点磷 酸化,促进抑制凋亡相关蛋白 Bcl-2/Bcl-xL 的表达,从而抑制 细胞凋亡^[21]。细胞色素 c 不仅是细胞内呼吸链传递电子的物 质,也是介导细胞凋亡的重要调控蛋白。当高糖刺激下,导致胰 岛细胞线粒体膜去极化氧化磷酸化作用解偶联等反应,使细胞 色素 c 从线粒体释放进入胞浆中,活化 caspase 9,激活 caspase 3,从而导致 caspase 级联反应,促使凋亡发生^[20]。而 Akt 可通过 磷酸化 Ser196,使 caspase 9 灭活,抑制细胞凋亡^[23]。为了研究 CHS 的抗凋亡作用机制,我们测定了 CHS 对 Akt 蛋白磷酸化 水平的影响。结果发现,高糖使 Akt 的磷酸化水平显著降低,而 CHS 预处理组则显著升高,并有剂量依赖关系。为了进一步验 证 Akt 的作用,Akt 特异性抑制剂 LY294002 用于阻断 Akt,观 察 CHS 的作用。结果发现,LY294002 使 CHS 的胰岛细胞保护 能力大大下降,促进胰岛素释放的活性明显下降,表明 CHS 通 过 Akt 信号通路发挥胰岛细胞保护作用。

那么 CHS 激活 Akt 后,通过哪些信号分子发挥作用的呢? mTOR 是 Akt 的下游信号分子之一已在很多细胞上得到验证。 mTOR 是一个非常保守的丝氨酸 / 苏氨酸激酶,其可以通过整 合不同的营养物质、激素、生长因子等,对细胞的生长、分化、增 殖等方面有重要的调控作用,同时其对细胞内蛋白质合成、脂 质代谢以及自噬等过程起关键调节作用 [24]。在动物中激活 mTORC1,可增加胰岛β细胞的体积和总质量,从而提高血液 中胰岛素含量,改善糖耐量^[25]。mTORC1 还可调控胰岛β细胞 中 Cyclin D2 和 D3 的合成和稳定性,从而参与调控细胞周期 ^[26]。mTORC1 除对维持胰岛 β 细胞的总质量具有重要意义外, 还发现其参与长期促泌下的功能代偿机制。长期的促泌可使 β细胞脱颗粒,可代偿性的激活钙通道介导的 mTORC1,并增 加其下游的翻译调节因子,促进细胞内胰岛素的合成,避免胰 岛素库存耗竭,从而维持胰岛素的持续分泌能力四。在体外培 养的胰岛 β 细胞中,抑制 mTORC1 活性可显著降低细胞内总 蛋白的含量以及胰岛素的合成水平,长时间的抑制还会导致胰 岛细胞的凋亡^[28]。另外,有研究发现,抑制 mTORC1 活性能够 影响线粒体的功能,尤其是 α- 酮戊二酸脱氢酶的活性,从而进 一步影响糖类代谢以及 ATP 合成,导致胰岛素的分泌减少[29]。 用雷帕霉素抑制 mTORC1 活性后,细胞内自噬水平增加,导致 胰岛细胞内胰岛素合成过程中一些重要蛋白发生降解,从而降 低胰岛素分泌水平[30]。

由此可见,mTOR 信号通路在胰岛 β 细胞功能中扮演重要 角色。由结果可知,CHS 可以激活 mTOR,并磷酸化下游分子 S6K,表明 CHS 可以激活 mTOR 信号通路。同时,采用 mTOR 的特异性抑制剂阻断 mTOR 发现,CHS 的保护作用减弱,表明 CHS 通过 mTOR 发挥保护作用。采用 Akt 特异性特异性抑制 剂阻断 Akt 后发现,CHS 对 mTOR 的激活作用减弱,表明 CHS 通过 Akt 激活 mTOR 信号通路。

综上所述,本研究发现 CHS 能够保护高糖诱导的 INS-1 细胞功能损伤,其可能的分子机制是通过激活 Akt/mTOR 信号 通路发挥抗凋亡作用。结果也提示我们,CHS 有望成为临床 2 型糖尿病治疗和胰岛 β 细胞保护的候选药物。

参考文献(References)

- Kharroubi I, Ladriere L, Cardozo AK, et al. Free fatty acids and cytokines induce pancreatic beta-cell apoptosis by different mechanisms: role of nuclear factor-kappaB and endoplasmic reticulum stress. Endocrinology, 2004, 145(11): 5087-5096
- [2] Harmon JS, Stein R, Robertson RP. Oxidative stress-mediated, post-translational loss of MafA protein as a contributing mechanism to loss of insulin gene expression in glucotoxic beta cells [J]. J Biol Chem, 2005, 280(12): 11107-11113
- [3] Singh B N, Kumar D, Shankar S, et al. Rottlerin induces autophagy which leads to apoptotic cell death through inhibition of

PI3K/Akt/mTOR pathway in human pancreatic cancer stem cells[J]. Biochemical Pharmacology, 2012, 84(9): 1154-1163

- [4] Gaglia J L, Guimaraes A R, Harisinghani M, et al. Noninvasive imaging of pancreatic islet inflammation in type 1A diabetes patients [J]. Journal of Clinical Investigation, 2011, 121(1): 442-445
- [5] 汤海峰,易杨华,王忠壮,等.太白楤木根皮化学成分的研究[J]. 中国 药学杂志, 1996, 31(4): 204-206 Tang Hai-feng, Yi Yang-hua, Wang Zhong-zhuang, et al. Study on the chemical constituents of aralia aralia [J]. Chinese Journal of Pharmaceuticals, 1996, 31(4): 204-206
- [6] Xi M, Hai C, Tang H, et al. Antioxidant and antiglycation properties of triterpenoid saponins from Aralia taibaiensis traditionally used for treating diabetes mellitus[J]. Redox Report, 2010, 15(1): 20-28
- [7] Xi M, Hai C, Tang H, et al. Antioxidant and antiglycation properties of total saponins extracted from traditional Chinese medicine used to treat diabetes mellitus [J]. Phytotherapy Research, 2008, 22 (2): 228-237
- [8] Cui J, Xi MM, Li YW, et al. Insulinotropic effect of Chikusetsu saponin IVa in diabetic rats and pancreatic β-cells [J]. Journal of Ethnopharmacology, 2015, 164: 334-339
- [9] Bi Y, Xu Y, Li M, et al. Prevalence and Control of Diabetes in Chinese Adults: The China Metabolic Risk Factor Study[J]. Circulation, 2013 (12): A11
- [10] Pan C, Yang W, Jia W, et al. Management of Chinese patients with type 2 diabetes, 1998-2006: the Diabcare-China surveys [J]. Current Medical Research & Opinion, 2009, 25(1): 39-45
- [11] Rudenski A S, Hadden D R, Atkinson A B, et al. Natural history of pancreatic islet B-cell function in type 2 diabetes mellitus studied over six years by homeostasis model assessment [J]. Diabetic Medicine, 1988, 5(1): 36-41
- [12] Sutherland D E, Gruessner R, Kandswamy R, et al. Beta-cell replacement therapy (pancreas and islet transplantation) for treatment of diabetes mellitus: an integrated approach[J]. Transplantation Proceedings, 2003, 35(5): 1625-1627
- [13] Greenbaum C J, Havel P J, Jr T G, et al. Intra-islet insulin permits glucose to directly suppress pancreatic A cell function [J]. Journal of Clinical Investigation, 1991, 88(3): 767-773
- [14] Tajiri Y, Grill V. Aminoguanidine exerts a beta-cell function-preserving effect in high glucose-cultured beta-cells (INS-1)[J]. Int J Exp Diabetes Res, 2000, 1(2): 111-119
- [15] Robertson R P, Harmon J, Tananka Y, et al. Glucose Toxicity of the Pancreatic β-Cell[M]// Molecular Basis of Pancreas Development and Function. Springer US, 2001: 47-66
- [16] Yin H, Lowery M, Glass J. In prostate cancer C/EBPalpha promotes cell growth by the loss of interactions with CDK2, CDK4, and E2F and by activation of AKT[J]. Prostate, 2009, 69(9): 1001
- [17] Tuttle RL, Gill N S, Pugh W, et al. Regulation of pancreatic β -cell growth and survival by the serine/threonine protein kinase Akt1/PKB α [J]. Nature Medicine, 2001, 7(10): 1133-1137
- [18] 杜文静.p53 蛋白在细胞凋亡中的作用机制研究 [D]. 中国科学技 术大学,2008

Du Wen-jing. Mechanism research of the role of p53 protein in the cell apoptosis [D]. University of Science and Technology of China, 2008 (下转第 3244 页)

- [8] Sakamoto H, Asahara T, Chonan O, et al. Comparative Analysis of Gastrointestinal Microbiota Between Normal and Caudal-Related Homeobox 2 (Cdx2) Transgenic Mice [J]. Intest Res, 2015, 13(1): 39-49
- [9] Ye J, Ge J, Zhang X, et al. Pluripotent stem cells induced from mouse neural stem cells and small intestinal epithelial cells by small molecule compounds[J]. Cell Res, 2016, 26(1): 34-45
- [10] Samadani A A, Akhavan-Niaki H. Interaction of sonic hedgehog (SHH) pathway with cancer stem cell genes in gastric cancer [J]. Med Oncol, 2015, 32(3): 1-7
- [11] Abu-Remaileh M, Bender S, Raddatz G, et al. Chronic inflammation induces a novel epigenetic program that is conserved in intestinal adenomas and in colorectal cancer [J]. Cancer Res, 2015, 75 (10): 2120-2130
- [12] Sallmyr A, Matsumoto Y, Roginskaya V, et al. Inhibiting Mitochondrial DNA Ligase III_α Activates Caspase 1-Dependent Apoptosis in Cancer Cells[J]. Cancer Res, 2016, 76(18): 5431-5441
- [13] Barese C N, Felizardo T C, Sellers S E, et al. Regulated Apoptosis of Genetically Modified Hematopoietic Stem and Progenitor Cells Via an Inducible Caspase-9 Suicide Gene in Rhesus Macaques [J]. Stem Cells, 2015, 33(1): 91-100
- [14] Cabahug Zuckerman P, Frikha Benayed D, Majeska R J, et al. Osteocyte apoptosis caused by hindlimb unloading is required to trigger os-

teocyte RANKL production and subsequent resorption of cortical and trabecular bone in mice femurs [J]. J Bone Miner Res, 2016, 31(7): 1356-1365

- [15] Nejadnik H, Ye D, Lenkov O D, et al. Magnetic resonance imaging of stem cell apoptosis in arthritic joints with a caspase activatable contrast agent[J]. ACS Nano, 2015, 9(2): 1150-1160
- [16] Wahlström T, Henriksson M A. Impact of MYC in regulation of tumor cell metabolism [J]. Biochim Biophys Acta, 2015, 1849 (5): 563-569
- [17] Chang C H, Pearce E L.Emerging concepts of T cell metabolism as a target of immunotherapy[J]. Nat Immunol, 2016, 17(4): 364-368
- [18] Giménez-Cassina A, Danial N N. Regulation of mitochondrial nutrient and energy metabolism by BCL-2 family proteins [J]. Trends Endocrinol Metab, 2015, 26(4): 165-175
- [19] Liu J, Zhang C, Hu W, et al. Tumor suppressor p53 and its mutants in cancer metabolism[J]. Cancer Lett, 2015, 356(2): 197-203
- [20] Vander Broek R, Mohan S, Eytan D F, et al. The PI3K/Akt/mTOR axis in head and neck cancer: functions, aberrations, cross-talk, and therapies[J]. Oral Dis, 2015, 21(7): 815-825
- [21] Marques R B, Aghai A, de Ridder C M A, et al. High efficacy of combination therapy using PI3K/AKT inhibitors with androgen deprivation in prostate cancer preclinical models[J]. Eur Urol, 2015, 67(6): 1177-1185

(上接第 3229 页)

- [19] Wang Y, Zhao Y, Liu Y, et al. Chamaejasmine inactivates Akt to trigger apoptosis in human HEp-2 larynx carcinoma cells [J]. Molecules, 2011, 16(10): 8152-8164
- [20] Yang J, Liu X, Bhalla K, et al. Prevention of Apoptosis by Bcl-2: Release of Cytochrome c from Mitochondria Blocked[J]. Science, 1997, 275(5303): 1129-1132
- [21] Fujita E, Jinbo A, Matuzaki H, et al. Akt phosphorylation site found in human caspase-9 is absent in mouse caspase-9 [J]. Biochem Biophys Res Commun, 1999, 264(2): 550-555
- [22] Walter T, Scoazec J Y, Couderc C, et al. Well-differentiated pancreatic islet cell carcinoma: Is there reversibility in mTOR inhibitor resistance?[J]. Acta Oncologica, 2011, 50(5): 731-732
- [23] Elghazi L, Balcazar N, Blandino-Rosano M, et al. Decreased IRS Signaling Impairs β-Cell Cycle Progression and Survival in Transgenic Mice Overexpressing S6K in β-Cells[J]. Diabetes, 2010, 59(10): 2390
- [24] Balcazar N, Sathyamurthy A, Elghazi L, et al. mTORC1 activation

regulates beta-cell mass and proliferation by modulation of cyclin D2 synthesis and stability[J]. Journal of Biological Chemistry, 2009, 284 (12): 7832-7842

- [25] Nie J, Liu X, Lilley B N, et al. SAD-A kinase controls islet β-cell size and function as a mediator of mTORC1 signaling[J]. Pnas, 2013, 110 (34): 13857-13862
- [26] Wang Q, Cai Y, Van d C M, et al. Interaction of glibenclamide and metformin at the level of translation in pancreatic β cells [J]. Journal of Endocrinology, 2011, 208(2): 161-169
- [27] Shimodahira M, Fujimoto S, Mukai E, et al. Rapamycin impairs metabolism-secretion coupling in rat pancreatic islets by suppressing carbohydrate metabolism[J]. Journal of Endocrinology, 2010, 204(1): 37
- [28] Tanemura M, Nagano H, Taniyama K, et al. Role of rapamycin-induced autophagy in pancreatic islets [J]. American Journal of Transplantation Official Journal of the American Society of Transplantation & the American Society of Transplant Surgeons, 2012, 12(4): 1067