doi: 10.13241/j.cnki.pmb.2015.09.003

Homer1a 基因敲除对小鼠局灶性脑缺血再灌注损伤的作用*

冯乐霄 陈 涛 刘文博 田士来 陈晓燕 费 舟[△] (第四军医大学西京医院神经外科 陕西西安 710032)

摘要目的:通过研究 homerla 基因敲除小鼠脑缺血再灌注损伤及海马区星形胶质细胞活化、数目形态变化,探讨 homerla 基因 在脑缺血损伤中的作用及机制。方法:取雄性 homerla 基因敲除(Knock Out, KO)小鼠及同窝野生型(Wild Type, WT)小鼠各 15 只,分为基因敲除假手术组(Sham Knock Out, SKO, n=3)、基因敲除型缺血 2 h 再灌注 24 h 组(Model Knock Out, MKO, n=12)、野 生型假手术组(Sham Wild Type, SWT, n=3)及野生型缺血 2 h 再灌 24h 组(Model Wild Type, MWT, n=12)。线栓法闭塞小鼠大脑 中动脉制作脑缺血再灌注损伤模型(middle cerebral artery occlusion and reperfusion, MCAO/R),在缺血再灌注损伤前(0 h)及缺血 再灌注后 3 h、6 h、12 h、24 h 后进行政良版神经损伤严重性评分 (modified Neurological severity scores, mNSS)、2,3,5—氯化三苯 基四氮唑(2,3,5triphenyltetrazolium chloride, TTC)染色、苏木素—伊红染色(Hematoxylin-eosin staining, HE)、原位末端转移酶标记 技术(terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick end labeling, TUNEL)检测及免疫 荧光染色观察海马区星形胶质细胞神经纤维酸性蛋白(Glial Fibrillary Acidic Protein, GFAP)改变。结果:SKO 组、SWT 组行为学 mNSS 评分均为 0 分, TTC 染色未见梗死灶。TUNLE 及 GFAP 染色阳性细胞数很少且未见统计学差异(P>0.05)。脑缺血再灌注 24 h 后, MKO 组 mNSS 评分较 MWT 组高; TTC 染色 MKO 组较 MWT 组梗死百分比高; MKO 组较 MWT 组 TUNEL 凋亡率高; GFAP 免疫荧光染色阳性数 MKO 组少于 MWT 组, 且均有统计学差异(P<0.05)。结论: homer1a 基因敲除加重了小鼠脑缺血再灌 注损伤, 星形胶质细胞可能参与并发挥复杂作用。

关键词: Homerla;基因敲除;缺血再灌注;星形胶质细胞 中图分类号:R743.31;Q95-3 文献标识码:A 文章编号:1673-6273(2015)09-1613-06

Effect of Homer1a Knockout on Ischemia Reperfusion Brain Injury induced by Middle Cerebral Artery Ischemia Reperfusion Model in Mice*

FENG Le-xiao, CHEN Tao, LIU Wen-bo, TIAN Shi-lai, CHEN Xiao-yan, FEI Zhou⁴

(Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University,

Xi'an, Shaanxi, 710032, China)

ABSTRACT Objective: To investigate effect of homer1a and observe Astrocyte activation in hippocampus through homer1a gene knockout (KO) mice with focal cerebral ischemia-reperfusion insult. Methods: 15 male homer1a gene KO mice and 15 male wild-type (WT) mice were randomly divided into four groups. sham operated group (SKO, n=3; SWT, n=3); model groups (MKO, n=12; MWT, n=12). Mice were subjected to transient middle cerebral artery occlusion (MCAO) for 2 h, followed by 24 h reperfusion with model group. Sham group were subjected to the same surgical procedure without MCAO. The neurological function was evaluated with the modified neurological severity scores (mNSS) at 0 h, 3 h, 6 h, 12 h, 24 h. after MCAO/R. It was marked 0 h before MCAO operation; Brain slices were observed for infarction by 2,3,5 triphenyltetrazolium chloride(TTC); Histomorphology of brain slices were observed by HE-staining; The cell apoptosis were determined by using terminal deoxynucleotidyl transferase (TdT)-mediated deoxynucleotidyl triphosphate (dUTP) nick end labeling (TUNEL); and the specific markers glial fibrillary acidic protein(GFAP) of astrocyte(Ast) was measured by immunofluorescence. Results: It was almost 0 score point that mNSS scores of mice in SKO group and SWT group; No ischemic lesion was found in SKO group and SWT group; There was not significant differences in rations of tunel-positive cells, number of GFAP-positive cells between SKO group and SWT group. (P>0.05) The mNSS score raised in the MKO group versus those in the MWT group at 24 h point (P<0.05); TTC staining showed increased infarct volume in MKO group compared with MWT group (P<0.05); The percentage of TUNEL-positive cells was higher in MKO group than MWT group (P<0.05); But, the expression of GFAP was declined in MKO group than MWT group (P<0.05). Conclusion: Homerla KO mice exacerbated focal cerebral ischemia reperfusion injury and Ast maybe paly a role via homer1a in this process.

Key words: Homer1a; Knockout; Ischemia reperfusion brain injury; Astrocytes Chinese Library Classification (CLC): R743.31; Q95-3 Document code: A Article ID: 1673-6273(2015)09-1613-06

△通讯作者:费舟,电话:(029)83375323,E-mail: feizhou@fmmu.edu.cn

^{*}基金项目:国家自然科学基金项目(81430043)

作者简介:冯乐霄(1985-),男,硕士研究生,主要研究方向:脑缺血性疾病,电话:18049633901,E-mail:skin3375155@163.com

⁽收稿日期:2014-10-24 接受日期:2014-11-20)

前言

缺血性脑损伤是人类健康一大威胁,根据世界卫生组织报 告,每年约有570万人死于该疾病,且具有较高的致残率,给社 会和家庭造成沉重的经济负担^[1]。1997年 Brakeman 等在突触 后致密体中发现一种新的蛋白家族—homer 蛋白^[2]。该蛋白主 要分为 homer1、homer2 和 homer3 三型, homer1 又被分为 homer1a 及 homer1b/c 两组亚型, homer1a 是最早成功分离的 homer蛋白,该蛋白属即早基因编码,正常条件下很少表达,而 在神经元激活情况下快速表达四。作为突出后致密体骨架蛋白, 因 homer 蛋白与代谢性谷氨酸受体 5 (group I metabotropic glutamate receptor 5, mGluR5)、三磷酸肌醇受体(inositol 1, 4, 5-triphosphate receptors, IP3R)、瞬时受体电势 C (transient receptor potential cation channels, TRPC) 等连接相互作用参与神 经元细胞信号的转导和调控^[4],所以一直是中枢神经疾病研究 的热点,研究证实,homer1a蛋白在细胞氧糖剥夺损伤模型中 通过对诸如兴奋性毒性、细胞内钙离子浓度等调节发挥保护作 用^[5]。星形胶质细胞作为中枢神经系统中最重要的胶质细胞,参 与对神经元细胞的支持、内环境稳定,炎症反应等活动,在缺血 再灌注性脑损伤中具有复杂作用¹⁶。然而有关 homer1a 基因在 体脑缺血再灌注损伤中的作用及对星形胶质细胞影响却未见 报道,本研究试图探讨 homer1a 基因对小鼠脑缺血再灌注损伤 的作用,及对星形胶质细胞活化增生反应的影响。

1 材料与方法

1.1 材料与试剂

制备模型栓线型号 1618-50 购自北京沙东生物试剂有限 公司, 异氟烷动物气体麻醉剂购自瑞沃德公司, TTC 染色粉剂 购自美国 sigma 公司; TUNEL 试剂盒购自 Roche 公司; HE 染 色试剂购自于武汉三鹰生物试剂公司; 兔抗小鼠 GFAP 抗体购 自于 Gene Tex 公司, 稀释比 1:100。

1.2 主要仪器

深圳瑞沃德公司,型号 RWD510E—瑞沃德小动物麻醉机; 德国 LEICA 公司手术显微镜;中国武汉海瑞特石蜡包埋机;德 国 LECIA 公司石蜡切片机; 日本 Olympus 公司 BX41 荧光显 微镜;美国 Media Cybernetics 公司 Image Pro Plus 6.0 (IPP 6.0) 彩色医学图像分析软件。

1.3 实验方法

1.3.1 实验动物及分组 Homerla 基因敲除种鼠由美国约翰 霍普金斯大学 Paul F.Worley 教授赠送,在第四军医大学 SPF 级动物实验中心饲养并配种繁殖,遗传背景为 C57BL/6J,自由 饮食,室温控制在 25 ℃,白昼与黑夜通过室内灯光交替调控, 各 12 小时(hour, h)。取 10 周龄,体重在 20-25 g 经基因鉴定的 小鼠共 30 只,分为两组,其中基因敲除型(KO)15 只,同卧野 生型(WT)15 只,各组又分为模型组(M)与假手术组(S)。分别 为基因敲除模型组(MKO)12 只;基因敲除假手术组(SKO)3 只;野生型模型组(MWT)12 只;野生型假手术组(SWT)3 只,模 型组为缺血 2 h 再灌注 24 h。实验动物使用符合动物伦理学要 求。

1.3.2 基因鉴定 鼠龄在 4 周时,取尾尖约 0.5 cm 长度,加 DNA buffer 600 μL,20 mg/mL 蛋白酶 k 在 55 ℃水域过夜。加 饱和酚、氯仿、异戊醇混合液(25:24:1)500 μL 混合,12000 rpm 离心 10 min 取上清,加入无水乙醇 600 µL -20 ℃冰镇 10 min 12000 rpm 离心 10 min 弃上清加入 70 µL 乙醇洗涤沉淀,干燥 后加 50 µL TE 溶解 DNA 固体,用作 PCR 模板,设计引物共两 对,H_iF₁-H1R、H_iF₂-H_iR,H_iF₁ 序 列 为:AGTCAAAGAGTCC-CTCTGTTCTTG;H_iF₂ 序 列 为:TCATGTTTACAGTTCAGT-AATGCC;H1R 序列为:TGTGACACAGAACTCAGAGCCA-AG 扩增后凝胶电泳,观察鉴定结果。

1.3.3 小鼠大脑中动脉缺血再灌注模型建立 采用改良 Longa 线栓法制作小鼠脑缺血再灌注损伤模型^[78]。用 3%异氟烷麻 醉诱导,维持用 1%异氟烷混合 69% N₂O、30% O₂。小鼠仰卧位, 剪去颈部毛发,碘伏颈部正中消毒,沿中线切开皮肤,暴露小鼠 右侧颈总、颈内及颈外动脉(注意,勿伤及迷走神经),穿细线于 颈内、颈外及颈总动脉。颈总动近心端、颈外动脉靠近分叉出结 扎,颈内动脉细线打虚结备用,止血夹夹线牵拉,暂时阻断血 流。颈总动脉距分叉处约 0.5 cm 处剪一小口,栓线插入,从颈 总分叉处计算,经颈内动脉到达中动脉起始端阻断血流,进线 长度约 1.0 cm,有轻微阻力感后停止进线,结扎颈内动脉预先 备好的细线。简单缝合,放入底部有加热板的笼中,保温在 37 ℃。计时两小时,小鼠苏醒后重新麻醉,抽出细线实现再灌注。 假手术组操作同上,但不进入栓线。全部完成后,将小鼠放回笼 中,单笼饲养,自由进饮食。

1.3.4 行为学评分 模型组纳入采用 longa 评分^[9],达到 1-3 分 者,表示模型成功,手术时间大约 15 分钟,剔除手术时间过长、 出血多的小鼠。行为学评分应用改良版神经损伤严重性(modified Neurological severity scores,mNSS)评分法^[10],包括运动、 感觉、平衡和反射,共计 18 分,0 分为正常,分值越高损伤越严 重。分别在缺血再灌注损伤手术前(0 h),及缺血再灌注后 3 h、 6 h、12 h、24 h 由未参与实验者进行评分,多次评测取平均值。 1.3.5 TTC 染色及梗死体积百分比计算 模型组随机取出 6 只,假手术组各取 1 只脱臼处死,冰上操作,快速仔细取出小鼠 大脑去除小脑和嗅球,放入小鼠脑模,以 1 mm 厚度从额极开 始切 6 片,侵泡于事先用生理盐水配置好的浓度为 2% 2,3,5— 氯化三苯基四氮唑 (2,3,5triphenyltetrazolium chloride, TTC)染 液,摇床。约 30 分钟后取出并拍照。观察梗死情况,用 image pro plus6.0 软件计算梗死体积百分比。

1.3.6 脑组织切片制备 缺血再灌注 24 h 后,小鼠腹腔注射 浓度为 1%戊巴比妥钠(50 mg/kg)麻醉。固定四肢,剪开胸腔, 用钝性注射针头从心尖进针到主动脉,剪开右心耳,连接针头 快速注射 40 mL,配有肝素的生理盐水。冲洗血液,然后灌注多 聚甲醛溶液,快速灌注 80 mL,小鼠四肢抽动,肝脏变白为灌注 成功标志,随后调慢灌注速度,慢滴 120 mL。内固定后,取出大 脑,侵泡在 4℃,浓度为 4%多聚甲醛溶液 2 天,再在 35%酒精 溶液侵泡过夜,自动石蜡包埋机脱水包埋。连续冠状切片。

1.3.7 HE 染色 石蜡切片经过脱蜡止水,苏木素染色,盐酸乙醇分化,氨水反篮,伊红染色,二甲苯透明后,中性树胶封片,显微镜下观察。

1.3.8 TUNEL 染色 石蜡组织切片进行 TUNEL 染色,根据 试剂盒染色步骤进行,在 20× 放大倍数下,由未参与实验者随 即选取 6 个视野进行凋亡率计算取均值。

1.3.9 GFAP 免疫荧光染色 星形胶质细胞的免疫荧光染色 方法参照抗体说明书,石蜡切片常规脱蜡,配备的柠檬酸液高 压热法进行抗原修复 2 min,自来水洗,3%H₂O₂封闭内源性过

氧化氢酶 20 min, PBS 液洗 3 × 5 min, 0.15%triton-x100 破膜液 破膜 30 min, PBS 液洗 5 × 5 min, 胎牛血清稀释 GFAP 抗体为 1:100,4 ℃ 避光孵育过夜, PBS 洗 3 × 5 min, 加 1:1000 荧光二 抗室温孵育 1 小时, PBS 洗 3 × 5 min, 加 HOECHST10 min, PBS 洗 3 × 5 min 甘油封闭, 荧光显微镜下观察。

1.4 统计学处理

所有数据运用 SPSS16.0 软件进行数据分析,以均数±标 准差(x±s)的模式,用t检验检测,P<0.05 认为差异具有统计 学意义。

2 结果

2.1 基因鉴定结果

PCR 电泳后比较两板胶电泳结果图像,见图 1(Fig.1),仅 有 608 bp 条带的为野生型,出现 608 bp、441 bp 两个条带为杂 合子型,仅出现 441 bp 条带的为基因敲除型。共鉴定 142 只, 其中野生型 42 只,杂合子 79 只、基因敲除型 21 只。

图 1 DNA PCR 凝胶电泳

Fig. 1 Agarose gel electrophoresis of PCR products amplified from DNA isolated from filial generation mice

Note: M is DNA makr; 1-17 is Number of mice, Differential banding patterns of genes isolated from homer1a KO and WT mouse, only 441bp band indicates KO mice(such as 15).

2.2 神经损伤行为学评分

所有实验小鼠均进行 mNSS 行为学评分。结果见图 2(Fig. 2),其中,SWT、SKO 组所有小鼠评分几乎为 0 分,两模型组在 6 h 时间点损伤评分最高,随后缓慢下降,在缺血再灌 24 h 时 MKO 组评分较 MWT 组高,差异具有统计性(P<0.05)。

Fig. 2 Results of behavioral functional tests Note: Modified Neurological Severity Score (mNSS) test before and after middle cerebral artery occlusion/reperfusion (MCAO/R). 24h after MCAO/R, Ischemia-induced neurological deficits were significantly aggravated in mice that MKO group with MWT group (P<0.05).

2.3 TTC 染色及梗死体积百分比计算

TTC 染色显示, 假手术组 SWT、SKO 组均显示正常红色, 无白色梗死灶, 模型组 MWT、MKO 组均有白色梗死灶, MKO 组(45.60± 2.483)较 MWT 组(35.39± 2.261)梗死体积所占百分 比高,且具有统计学差异(P<0.05),见图 3。

图 3 A 图为各组 TTC 染色; B 图示各组梗死体积百分比比较 Fig. 3 A, TTC staining; B, Comparison of ischemia infarct ratios among different groups

Note: * P<0.05MKO compared with group MWT.

2.4 HE 染色结果

光镜下观察 HE 切片,见图 4(Fig.4)缺血坏死区细胞淡染, 细胞数变少,细胞核固缩,细胞水肿,细胞崩解,组织稀疏,无完 整细胞形态。假手术组脑组织着色均匀,细胞形态完整。从 HE 染色可以明确模型制作成功,石蜡切片可进行下一步实验。

2.5 TUNEL 染色

缺血 2 h 再灌注 24h 后,TUNEL 染色显示。假手术组 SWT、SKO 几乎未有阳性细胞,而模型组 MWT、MKO 均较假 手术组有大量阳性细胞表达,且 MKO 组 (62.72± 3.847)较 MWT 组(46.00± 3.827)阳性细胞数多,具有统计学差异(P<0.05) 见图 5。

2.6 GFAP 染色

缺血再灌注损伤后星形胶质细胞活化,GFAP蛋白抗体染 色呈现阳性反应,故有GFAP荧光染色。形态上,活化的星形胶 质细胞包体增大,突触增粗,增多,而未活化的星形胶质细胞包 体小,突触细。根据图6(Fig.6)提示。SWT、SKO组GFAP阳性 染色少,活化的星形胶质细胞少,而MWT、MKO组均较S组 GFAP阳性染色表达多可见大量活化的星形胶质细胞。比较 MKO与MWT组,两组活化的星形胶质细胞数有差异,具有统 计学意义(P<0.05),MKO组(35.83±3.219)活化增生的星形胶 质细胞数少于MWT组(46.83±3.646)。

图 4 不同区域的 HE 染色 Fig. 4 HE-stained brain sections

Note: A, Sections showed normal neurons in sham group. B, Sections at 24 h after ischemia/ reperfusion showed partial cell death, neuronal loss, cell shrinkage, nuclear condensation, and fragmentation. C, Sections showed ischemic penumbra.

Note: E, TUNEL staining as an indicator of ischemic cell death, in the cortex (A-D) of MCAO/R and sham animals. TUNEL positive cells appeared as green fluorescent, DAPI staining appeared as blue fluorescent.(scale=100 μm). F,The apoptosis rate of TUNEL positive cells was counted. MKO increased the number of TUNEL positive cells compared with MWT group. * P<0.05.

图 6 GFAP 星形胶质细胞染色

Fig. 6 Immunofluorescent staining for GFAP of Ast

G,GFAP expression in coronal brain sections. Immunofluorescent staining for GFAP (green, A-D), and HOECHST (blue) in the hippocampus of KO and WT mice after MCAO/R and sham group.(scale=20 μm). H, Quantification of the GFAP positive cells (average number of cells/ field of view) in sham and MCAO/R group. *P<0.05 compared with sham group, **P<0.05 MKO compared with MWT group.

3 讨论

自发现 homer 蛋白是突触后致密物蛋白家族后,其一直是 中枢神经系统中的研究热点。目前已发现 homer1、2、3 三类共 17种,其中 homer1 蛋白又分为 homer1a、homer1b/c。homer 蛋 白 N 段均含有一个保守的 EVH1(Ena/VASP homology1)序列, 能与 mGluR5、IP3R、TRPC 阳离子通道蛋白、Shank 等蛋白 C -端富含脯氨酸的结构相结合,参与细胞信号转导、调控及蛋白 分布^[11]。根据 homer 蛋白 C 端是否形成卷曲螺旋(Coiled-coil, CC)结构,又可以把 homer 蛋白分为短 homer 蛋白(无 CC 结 构)例如 homer1a,及长 homer 蛋白(含 CC 结构),例如 homer1b/c^[12]。由于 homer1b/c 具有 CC 结构可以形成同源二聚 体,所以可以有效链接两种 C - 端富含脯氨酸的蛋白,构成复 合体参与信号转导调控,短 homer 与长 homer 在结合 C - 端富 含脯氨酸的结构时具有竞争性,但是短 homer 由于没有 CC 结构无法形成同源二聚体,故 homer1a 对 homer1 b/c 具有负性调控作用,抑制及拆解 homer1 b/c 参与形成的复合体^[13]。在神经元细胞氧糖剥夺模型实验中,过度释放的谷氨酸通过与代谢性谷氨酸受体 mGluR5 结合产生兴奋性毒性,在缺血性脑损伤中发挥重要作用^[14]。通过 CC 结构形成的 Homer1b/c 二聚体连接 mGluR5 和 IP3R,所形成的的复合体在谷氨酸兴奋性毒性中参与信号转导。在本实验中,结果显示敲除 homer1a 加重了小鼠缺血再灌注脑损伤后的行为学损伤,TTC 是脂溶性光敏感复合物,与正常组织中的脱氢酶反应而呈红色,而缺血组织内脱氢酶活性下降,不能反应,故不会产生变化呈苍白,实验结果中,SKO、SWT 组没有白色梗死灶,而在 MKO、MWT 组均可见白色梗死灶,且 MKO 组梗死所占比例较 MWT 组更大,凋亡检测结果提示 MKO 组较 MWT 组细胞凋亡更加明显。这些实验

结果说明, 敲除 homer1a 基因后小鼠的脑缺血再灌注损伤加 重, 这与课题组前期细胞实验中的结果一致。有实验证实, homer1a 蛋白在缺血性脑损伤中表达上升^[15],由于 homer1a 蛋 白可以与 homer1b/c 竞争结合 mGluR5、IP3R 却不能形成二聚 体结构,故无法连接 mGluR5、IP3R 形成复合体结构,阻止了谷 氨酸结合受体后的信号转导, 对缺血性脑损伤起到保护作用 ^[16-18]。在本实验中敲除 homer1a 基因,不能表达 homer1a 蛋白, 故无法抑制兴奋性氨基酸毒性。实验中 homer1a 敲除组行为 学、梗死体积及细胞凋亡率均比野生型组高,在动物实验中,进 一步证实 homer1a 对脑缺血再灌注损伤具有保护作用。

星形胶质细胞,是中枢神经系统中最重要的胶质细胞。约 占脑容量的 50%, 对神经元起到支持和维持内环境稳定的作用 19。脑损伤后,星形胶质细胞是最早受影响的细胞。脑缺血再灌 注损伤后,兴奋性毒性物质谷氨酸(glutamic acid,GLU)过度释 放,参与对神经元细胞的损害作用。而活化的星形胶质细胞,可 以摄取过量的 GLU 起到保护作用。在本实验中,我们发现,两 模型组星形胶质细胞均较假手术组活化及数量增多。而 homer1a 基因敲除组星形胶质细胞的活化及增生比野生型组 要少。分析基因敲除组星形胶质细胞的减少,同样与mGluR5 及 homer 蛋白有关,有文献报告,在缺血性脑损伤后,星形胶质 细胞膜上 mGluR5 表达升高且参与了星形胶质细胞的凋亡和 坏死,比较 mGluR5 基因敲除和野生型小鼠缺血性脑损伤后发 现 mGluR5 基因敲除组有着更多的星形胶质细胞存活^[20]。在本 实验中,homer1a 基因敲除组星形胶质细胞活化增生少于野生 型组。猜测敲除 homer1a 基因后,缺血性脑损伤后 homer1a 不 表达。故不能对 mGluR5-homer1b/c-IP3R 复合体通路竞争抑制 及拆解,所以加重了星形胶质细胞的凋亡坏死。活化及增生的 星形胶质细胞减少,减弱了对缺血损伤后过度释放的 GLU 吸 收,这进一步加重了 GLU 对神经元及胶质细胞的兴奋性毒性 作用。但是星形胶质细胞对缺血再灌注脑损伤具有复杂的作 用,过度活化增生的胶质细胞又可在后期形成胶质瘢痕、过度 释放炎性因子,对损伤后恢复具有不利影响[21]。由于此次实验 未能观察具体机制及远期结果,所以要进一步阐明 homer1a 对 脑缺血再灌注损伤及对星形胶质细胞的作用仍需大量科研证 明。

参考文献(References)

- Saraf MK, Prabhakar S, Anand A. Neuroprotective effect of Bacopa monniera on ischemia induced brain injury [J]. Pharmacol Biochem Behav, 2010, 97(2): 192-197
- [2] Brakeman PR, Lanahan AA, O'Brien R, et al. Homer: a protein that selectively binds metabotropic glutamate receptors [J]. Nature, 1997, 386(6622): 284-288
- [3] Jimenez A, Bonastre M, Aguilar E, et al. Effect of the metabotropic glutamate antagonist MPEP on striatal expression of the Homer family proteins in levodopa-treated hemiparkinsonian rats [J]. Psychopharmacology (Berl), 2009, 206(2): 233-242
- [4] Luo P, Li X, Fei Z, et al. Scaffold protein Homer 1: implications for neurological diseases[J]. Neurochem Int, 2012, 61(5): 731-738
- [5] Zhang Lei, Liu Wen-bo, Fei Zhou, et al. Relationship between Homer and protein and glutamate and GABA associated with hypoxicischemic damage[J]. Chin J Nuerosurg Dis Res, 2009, 8(3): 248-251

(In Chinese)

- [6] Ouyang YB, Xu L, Yue S, et al. Neuroprotection by astrocytes in brain ischemia: importance of microRNAs [J]. Neurosci Lett, 2014, 56(5): 53-58
- [7] Steiner B, Roch M, Holtkamp N, et al. Systemically administered human bone marrow-derived mesenchymal stem home into peripheral organs but do not induce neuroprotective effects in the MCAo-mouse model for cerebral ischemia[J]. Neurosci Lett, 2012, 513(1): 25-30
- [8] Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats [J]. Stroke, 1989, 20(1): 84-91
- [9] Yang W, Shen Y, Chen Y, et al. Mesencephalic astrocyte-derived neurotrophic factor prevents neuron loss via inhibiting ischemiainduced apoptosis[J]. J Neurol Sci, 2014, 344(1-2): 129-138
- [10] Mao L, Jia J, Zhou X, et al. Delayed administration of a PTEN inhibitor BPV improves functional recovery after experimental stroke [J]. Neuroscience, 2013, 23(1): 272-281
- [11] Spellmann I, Rujescu D, Musil R, et al. Homer-1 polymorphisms are associated with psychopathology and response to treatment in schizophrenic patients[J]. J Psychiatr Res, 2011, 45(2): 234-241
- [12] Foa L, Gasperini R. Developmental roles for Homer: more than just a pretty scaffold[J]. J Neurochem, 2009, 108(1): 1-10
- [13] Murotomi K, Takagi N, Muroyama A, et al. Transient focal cerebral ischemia differentially decreases Homer1a and 1b/c contents in the postsynaptic density[J]. Neurosci Lett, 2012, 515(1): 92-96
- [14] Yang ZZ, Li J, Li SX, et al. Effect of ginkgolide B on striatal extracellular amino acids in middle cerebral artery occluded rats[J]. J Ethnopharmacol, 2011, 136(1): 117-122
- [15] JIiang Min, Ma Zheng-liang, Gu Xiao-ping, et al. Neurological impairment and expression of Homer1 protein in rats brain with ischemia-reperfusion injury [J]. J Southeast Univ, 2010, 29 (5): 546-549(In Chinese)
- [16] Bertaso F, Roussignol G, Worley P, et al. Homer1a-dependent crosstalk between NMDA and metabotropic glutamate receptors in mouse neurons[J]. PLoS One, 2010, 5(3): e9755
- [17] Lv MM, Cheng YC, Xiao ZB, et al. Down-regulation of Homerlb/c attenuates group I metabotropic glutamate receptors dependent Ca(2) (+) signaling through regulating endoplasmic reticulum Ca (2) (+) release in PC12 cells [J]. Biochem Biophys Res Commun, 2014, 450 (4): 1568-1574
- [18] Chen T, Fei F, Jiang XF, et al. Down-regulation of Homerlb/c attenuates glutamate-mediated excitotoxicity through endoplasmic reticulum and mitochondria pathways in rat cortical neurons [J]. Free Radic Biol Med, 2012, 52(1): 208-217
- [19] Wang N, Zhang Y, Wu L, et al. Puerarin protected the brain from cerebral ischemia injury via astrocyte apoptosis inhibition [J]. Neuropharmacology, 2014, 7(9): 282-289
- [20] Paquet M, Ribeiro FM, Guadagno J, et al. Role of metabotropic glutamate receptor 5 signaling and homer in oxygen glucose deprivation-mediated astrocyte apoptosis[J]. Mol Brain, 2013, 6: 9
- [21] Koyama Y. Signaling molecules regulating phenotypic conversions of astrocytes and glial scar formation in damaged nerve tissues [J]. Neurochem Int, 2014, 78C: 35-42