doi: 10.13241/j.cnki.pmb.2021.15.038

青海地区 46273 例女性宫颈 HPV 检测结果分析*

斯冬梅 伍东月 莹 杰 杜瑞亭 郭清民

(青海省人民医院妇科 青海 西宁 810007)

摘要 目的:根据青海地区妇女宫颈人乳头瘤病毒(HPV)检测结果,分析宫颈高危 HPV(HR-HPV)感染分布特点,为指导 HPV 疫苗接种提供理论依据。方法:采用 Hybriuax 技术检测 21 种高危型 HPV 亚型,对 2014 年 1 月 -2020 年 2 月于我院就诊的 46273 例女性宫颈人乳头瘤病毒分型检测。结果:46273 例妇女中,高危 HPV 阳性率 10.23%,高危 HPV 阳性率和年龄之间存在线性趋势,随年龄的增大感染比例上升。单一高危亚型 HPV 感染前三位的 HPV 亚型为 16、58 和 39,合计占到 45.64%。HPV 亚型感染以单高危阳性为主,占总 HPV 阳性数的 88.26%,占全部筛查人数的 9.03%。HPV16、58、31、68 亚型阳性率和年龄段之间存在线性趋势,随年龄的增大感染比例上升。HPV 感染亚型检出构成比各年龄段均以 HPV16 感染排在第一位,排在第二位除 61-70 岁为双高危外,均为 HPV58 为主。结论:青海地区女性 HPV 感染率较高,以单一高危型感染为主,HPV16、58、39、52 是主要的感染亚型,所以应针对青海地区 HPV 感染状况设计具有针对性的预防 HPV 感染亚型的疫苗。

关键词:青海;宫颈;人乳头瘤病毒;高危亚型

中图分类号:R711.74;R737.33 文献标识码:A 文章编号:1673-6273(2021)15-2982-04

Analysis of HPV Test Results in 46273 Women in Qinghai Area*

JIN Dong-mei, WU Dong-yue^{\(\Delta\)}, YING Jie, DU Rui-ting, GUO Qing-min

(Department of Gynaecology, Qinghai Provincial People's Hospital, Xining, Qinghai, 810007, China)

ABSTRACT Objective: According to the cervical human papillomavirus (HPV) detection results of women in Qinghai area, to analyze the distribution characteristics of cervical high-risk HPV (HR-HPV) infection and provide theoretical basis for the guidance of using HPV vaccination. Methods: The Hybriuax technology was used to detect 21 kinds of high-risk HPV subtypes, and the subtypes of HPV in 46,273 women visited our hospital from January 2014 to February 2020 was tested. Results: The positive rate of high risk HPV was 10.23% among 46,273 women. There was a linear trend between the patients' detection positive rate of high-risk HPV and age, and the infection rate increased with the increase of age. The top three HPV subtypes of single high-risk HPV infection were subtypes 16, 58 and 39, accounting for 45.64% in total. The majority HPV subtypes infection were single high-risk HPV detection positive, accounting for 88.26% of the total number of HPV positive, and 9.03% of the total number of people screened. The positive rates of HPV subtypes 16, 58, 31 and 68 showed a linear trend with age, and the infection rate increased with age. HPV-16 infection ranked first in all age groups, HPV-58 infection ranked second in all age groups except for those aged 61-70 who were with double high-risk HPV infection. Conclusion: Women in Qinghai area have a high rate of HPV infection, which is mainly caused by single high-risk infection, and subtypes 16, 58, 39 and 52 of high-risk HPV are the main infection subtypes. Therefore, according to the status of HPV infection in Qinghai, targeted vaccines should be designed to prevent HPV infection.

Key words: Qinghai; Cervical; Human papilloma virus; High-risk subtype

Chinese Library Classification(CLC): R711.74; R737.33 Document code: A

Article ID: 1673-6273(2021)15-2982-04

前言

人乳头瘤病毒(human papillomavirus, HPV)是人类最常见的性传播疾病病原体^[1]。高危型 HPV(high-risk HPV, HR-HPV)的持续感染被认为是宫颈癌的病因,HPV16 和 HPV18 在大约70%的宫颈癌和大约86%至95%的与 HPV 相关的非宫颈癌中检测到,例如肛门癌,口咽癌,阴道癌,外阴癌和阴茎癌^[24]。根

据流行病学调查,发现发展中国家宫颈癌患病率远远超过发达国家,表明宫颈癌的发病具有明显的地域差异性^[5,6]。并且宫颈癌 HPV 的亚型在不同种族和地区之间的呈现不同^[7],不同年龄大小的妇女感染 HPV 的几率也有所不同^[8]。越来越多的研究调查了 HPV 在许多地理区域的流行和基因型分布,结果差异很大^[9-11]。了解不同 HPV 类型在不同地理区域的分布对于优化宫颈癌预防策略(如疫苗接种和 HPV-DNA 初步筛查)至关重要^[12]。

(收稿日期:2020-12-23 接受日期:2021-01-18)

^{*}基金项目:青海省卫健委 2020 年基础研究指导项目(2020-wjzdx-06)

作者简介: 靳冬梅(1979-), 女, 本科, 副主任医师, 研究方向: 妇科肿瘤, E-mail: jdm2608217052@126.com

[△] 通讯作者: 任东月(1967-), 女, 本科, 主任医师, 研究方向: 妇科肿瘤, E-mail: wudongyue137@126.com

中国不同地区的恶性肿瘤癌发病率从高到低依次为:中部,西 部和东部[13]。西部地区的死亡率略高于中部地区,东部地区最 低,这与欠发达地区子宫颈癌筛查率低和 HPV 感染率高有关[14]。 青海属高海拔西部地区,是多民族聚居区,经济欠发达,因此相 关数据较缺乏。为提供青海地区宫颈病变早期防治的研究数 据,并指导 HPV 疫苗接种,本研究对该地区近六年以来的妇科 就诊患者 HPV 基因亚型感染情况进行统计分析,希望可以在 最大限度上提高高原地区广大妇女的生活质量,现报道如下。

1 对象与方法

1.1 对象

选取青海高原地区 2014年1月-2020年2月在我院门诊 就诊,并且询问后自愿接受下生殖道 HPV 分型筛查的有性生 活史的妇女。共计 46273 名, 年龄 16 岁 -91 岁, 平均年龄 (58.65± 10.73)岁。

1.2 方法

本研究采用 Hybriuax 技术对 21 种高危型 HPV(HR-HPV) 亚型进行检测,仪器与试剂盒均购自广东凯普生物科技股份有 限公司。首先全部患者取膀胱截石位,对外阴进行常规消毒后, 打开窥器,将阴道或宫颈口过多的分泌物用棉拭子轻轻擦拭干 净,再用取样刷紧贴宫颈口稍用力顺时针旋转5圈,停留30 秒,置于标本保存液中,保存在4℃冰箱备用,1周内测定。 HPV-DNA 检测共 15 种高危亚型,包括 16、18、31、33、35、39、 45,51,52,53,56,58,59,66,68

1.3 统计学分析

采用 SPSS 17.0 软件进行数据分析,定量资料采用 \bar{x} ± s 表 示,定性资料采用频数及构成比进行统计描述,并使用用 x² 检 验进行比较。采用 Cochran-Armitage 趋势检验分析不同等级的 变化趋势,P<0.05 为差异有统计学意义。

2 结果

2.1 HPV 感染情况

Chran Armitage 趋势性检验提示, HPV 阳性率和年龄之间 存在线性趋势($x^2=44.734, P=0.000$),随年龄的增大感染比例上 升,见表1。

2.2 HPV 亚型感染构成比

单一高危亚型 HPV 感染构成比提示在前三位的 HPV 亚 型为 16、58 和 39,合计占 45.64%。 见表 2。 HPV 亚型感染以单

高危阳性为主,占总 HPV 阳性数的 88.26%,占全部筛查人数 的 9.03%, 见表 3。

表 1 不同年龄段女性高危 HPV 感染构成比

Table 1 The constituent ratios of HR-HPV women at different ages

Age(years)	Screening cases	Positive cases(%)
≤ 30	7996	848(10.60)
31-40	13152	1206(9.16)
41-50	17175	1619(9.42)
51-60	6601	869(13.16)
61-70	961	146(15.19)
>70	388	47(12.11)
Total	46273	4735(10.23)

表 2 不同单一高危亚型 HPV 感染构成比

Cable 2 The constituent ratios of different single high-risk HPV subtype Proportion of total							
HPV subtypes	Cases(n)	positive HPV infections(%)					
16	1052	22.21					
58	651	13.74					
39	459	9.69					
52	405	8.55					
53	334	7.05					
18	223	4.70					
51	217	4.58					
31	198	4.18					
33	142	3.00					
66	130	2.75					
68	120	2.53					
56	88	1.86					
59	73	1.54					
45	45	0.95					
35	44	0.93					

表 3 单一高危和多重高危 HPV 感染构成比

Table 3 The constituent ratios of single and multiple high-risk HPV subtypes

HPV subtypes infected cases		Proportion of total positive HPV	Proportion of the total population	
	Cases(n)	infections(%)	(%)	
Single infection	4181	88.26	9.03	
Double infection	495	10.45	1.07	
Triple infection	50	1.10	0.10	
Quadruple infection	9	0.19	0.01	

2.3 不同年龄段女性高危亚型 HPV 检出率的比较

chran Armitage 趋势性检验提示, HPV16、58、31、68 亚型阳

性率和年龄段之间存在线性趋势(P<0.05),随年龄的增大感染 比例上升,见表 4。

表 4 不同年龄段女性高危亚型 HPV 检出率比[n(%)]

Table 4 The detection rates of HR-HPV women at different ages[n(%)]

HPV subtypes	≤ 30 yeras	31-40 years	41-50 years	51-60 years	61-70 years	>70 years	x^2	P
TIF v subtypes	(n=7996)	(n=13152)	(n=17175)	75) (n=6601)	(n=961)	(n=388)		Γ
16	162(2.03)	271(2.06)	397(2.31)	172(2.61)	36(3.75)	14(3.6)	33.371	0.000
58	115(1.44)	172(1.31)	218(1.27)	119(1.80)	19(1.98)	8(2.06)	3.939	0.047
39	100(1.25)	101(0.77)	156(0.91)	86(1.30)	10(1.04)	6(1.55)	0.550	0.458
52	91(1.34)	105(0.80)	122(0.71)	70(1.06)	12(1.25)	5(1.29)	0.134	0.714
53	52(0.65)	87(0.66)	120(0.70)	67(1.01)	7(0.73)	1(0.26)	3.167	0.075
18	32(0.40)	69(0.52)	78(0.45)	37(0.56)	6(0.62)	0(0)	0.362	0.547
51	41(0.51)	59(0.45)	77(0.45)	33(0.50)	5(0.52)	2(0.52)	0.002	0.961
31	23(0.29)	62(0.47)	66(0.38)	38(0.58)	7(0.73)	2(0.52)	5.119	0.024
33	18(0.23)	42(0.32)	54(0.31)	26(0.39)	2(0.21)	0(0)	0.880	0.348
66	24(0.30)	32(0.24)	44(0.26)	28(0.42)	1(0.10)	1(0.26)	0.412	0.521
68	17(0.21)	31(0.24)	44(0.26)	19(0.29)	7(0.73)	2(0.52)	4.544	0.033
56	22(0.28)	20(0.15)	19(0.11)	23(0.35)	3(0.31)	1(0.26)	0.259	0.611
59	15(0.19)	17(0.13)	23(0.13)	17(0.26)	1(0.10)	0(0)	0.091	0.763
45	9(0.11)	9(0.07)	18(0.10)	8(0.12)	1(0.10)	0(0)	0.075	0.785
35	6(0.08)	12(0.09)	15(0.09)	8(0.12)	3(0.31)	0(0)	1.495	0.221
Double infection	114(1.43)	102(0.78)	149(0.87)	105(1.59)	20(2.08)	5(1.29)	2.701	0.100
Triple infection	6(0.08)	14(0.11)	17(0.10)	10(0.15)	3(0.31)	0(0)	2.212	0.137
Quadruple infection	1(0.01)	2(0.02)	2(0.01)	2(0.03)	2(0.21)	0(0)	3.397	0.065

2.4 不同年龄段 HPV 感染亚型的检出构成比

通过年龄段分析,HPV 感染亚型检出构成比提示各年龄 段均以 HPV16 感染排在第一位,排在第二位除 61-70 岁为双 高危外,均为 HPV58。提示不同年龄段感染亚型以 HPV16 和 HPV58 为主。见表 5。

表 5 不同年龄段 HPV 高危感染居前五位亚型分布

Table 5 The distribution of top-five high-risk HPV subtypes at different ages

Groups	First	Second	Third	Fourth	Fifth
≤ 30 years	16	58	Double infection	39	52
31-40 years	16	58	52	Double infection	39
41-50 years	16	58	39	Double infection	52
51-60 years	16	58	Double infection	39	52
61-70 years	16	Double infection	58	39	52
>70 years	16	58	39	52, Double infection	51, 31, 68

3 讨论

子宫颈癌是女性中第四常见的癌症,是全球主要的公共卫生问题之一[15-17]。据估计,超过85%的宫颈癌事件和死亡病例发生在发展中国家,并且子宫颈癌是中国最常见的妇科癌症[18]。因此,预防和控制宫颈癌的负担需要引起广泛关注。该肿瘤发病率的地域差异十分明显^[19],在不同的国家和地区,HPV感染阳性率和所携带的亚型不同,并且对于不同的亚型而言,其感染致病率和治疗手段都有所差异^[20]。持续存在的高危人类乳头瘤病毒感染是导致各种类型的癌症(尤其是宫颈癌)的主要原

因^[21]。然而,大多数 HPV 感染都是暂时性的。一般而言,感染了 HPV 的妇女在 9~15 个月后,其自身免疫能力是可以将病毒清除。仅有 9%的病例是呈现持续感染高达两年以上,对于这部分妇女,其发展为宫颈癌的风险更大^[22]。故 HPV 感染的检测对宫颈癌的防治具有极其重要意义。

本研究采用 Hybriuax 技术检测 HPV-DNA 高危亚型,对青海地区的 HPV 感染类型以及阳性率进行了调查,结果显示高危 HPV 阳性率和年龄之间存在线性趋势,随年龄的增大感染比例上升,本研究结果与相关研究[^{C3,24]}发现结果基本一致。也就是 HPV 总感染率及高危亚型的感染率随着年龄的增长逐渐升

高,尤其是高危亚型 HPV16,这是与宫颈癌的发生密切相关的 -个亚型,也是最常见的一个亚型^[25],该亚型可随年龄增长阳 性率明显递增。高危亚型 HPV 感染中,单一高危型为主要感染 亚型,占9.03%,其中,HPV16在各年龄组均占首位,占 22.21%; HPV58 为第二致病亚型,占 13.74%。有报道称, HPV 的多重感染在一定程度上,使宫颈癌发生的可能性更大四,相 对而言,HPV单一感染患者发生宫颈癌的风险明显比多重感 染患者低,并且近些年来多重感染患者的检出率呈现逐渐增高 的趋势[27]。对本回顾对象的分析显示,二重感染(双高危)是多 重感染中最常见的一种形式,占10.45%。青海地区最常见的高 危亚型感染构成依次是 HPV16、58、39 和 52, 而徐帅师[28]报道 的河北地区高危型 HPV 感染率排在前 3 位的依次是 HPV16、 58 和 52;刘灵燕等[29]报道的上海市宝山区前 5 位 HPV 感染型 别依次为 HPV52、16、53、58 和 39; 孟凡萍等[30]报道的渝东北地 区前 5 位 HPV 感染型别依次为 HPV52、16、53、58 和 51;提示 HPV 感染的基因型也存在明显的地域和人群差异。

综上所述,青海是一个经济欠发达、文化水平相对偏低以 及卫生资源欠缺的地区,并且地处西北,许多患者都生活在医 疗条件和自然环境较差的偏远地区或者高海拔牧区,因此,深 入挖掘符合青海地区女性 HPV 感染基因亚型、感染率及流行 趋势,对于本地区妇女的健康有着重要的意义。本文分析初步 得知青海地区 HPV 感染有其自身的特点和规律。为了明确青 海地区宫颈癌的发病率与高危型 HPV 感染之间的具体关系, 我们需要根据其自身特点和规律,并且在结合本地区 HPV 感 染的实际情况下,有针对地开展对宫颈癌的防治工作。为针对 青海地区 HPV 感染状况设计与针对性的预防 HPV 感染亚型 的疫苗提供了依据。

参考文献(References)

- [1] 万彬,陈静,童华诚,等.人乳头瘤病毒与重要性传播疾病病原体共感 染对不同宫颈病变发生风险的影响 [J]. 中国性科学, 2019, 28(9): 132-136
- [2] 王海瑞.p16/KI-67、p16/mcm2 表达与高危型 HPV 感染的关系及其 在宫颈癌筛查和 HPV 分流中的应用评估[D].北京协和医学院;中 国医学科学院;清华大学医学部;北京协和医学院中国医学科学 院,2017
- [3] 覃小敏,邢辉,李琳, 等.高危型 HPV 持续感染在宫颈病变中的分布 及其影响因素分析[J].癌症进展, 2017, 15(12): 1439-1442
- [4] Hao S, Wang C, Liu S, et al. HPV genotypic spectrum in Jilin province, China, where non-vaccine-covered HPV53 and 51 are prevalent, exhibits a bimodal age-specific pattern [J]. PloS one, 2020, 15(3): e0230640
- [5] 王俊微,陈俊宇,赵淑华.宫颈残端癌的致病因素研究进展[J].中国实 验诊断学, 2018, 22(2): 355-357
- [6] 果海娜,何江耀,李良,等.宫颈高危型 HPV 分型检测在宫颈癌筛查 中的临床意义[J].中国实验诊断学, 2016, 20(8): 1340-1343
- [7] Shen Y, Gong JM, Li YQ, et al. Epidemiology and genotype distribution of human papillomavirus (HPV) in women of Henan Province, China [J]. Clin Chim Acta, 2013, 415(16): 297-301
- [8] Liao G, Jiang X, She B, et al. Multi-Infection Patterns and Co-infection Preference of 27 Human Papillomavirus Types Among 137,943 Gynecological Outpatients Across China [J]. Front Oncol, 2020, 10:
- [9] Wang R, Guo XL, Wisman GB, et al. Nationwide prevalence of human

- papillomavirus infection and viral genotype distribution in 37 cities in China[J]. BMC Infect Dis, 2015, 15(1): 257
- [10] Jiang L, Tian X, Peng D, et al. HPV prevalence and genotype distribution among women in Shandong Province, China: Analysis of 94,489 HPV genotyping results from Shandong's largest independent pathology laboratory[J]. PLoS One, 2019, 14(1): e0210311
- [11] Li H, Li P, Huang L, et al. Prevalence characteristics of cervical human papillomavirus (HPV) infection in the Zhoupu District, Shanghai City, China[J]. Virol J, 2020, 17(1): 84
- [12] 陈万青,孙可欣,郑荣寿,等.2014年中国分地区恶性肿瘤发病和死 亡分析[J].中国肿瘤, 2018, 27(1): 1-14
- [13] 孙可欣,郑荣寿,张思维,等.2015年中国分地区恶性肿瘤发病和死 亡分析[J].中国肿瘤, 2019, 28(1): 1-11
- [14] Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015 [J]. CA Cancer J Clin, 2016, 66(2): 115-132
- [15] 黄欣宇,王虹宇,孙连桃.宫颈癌相关危险因素调查[J].包头医学院 学报, 2019, 35(8): 90-93
- [16] Saei Ghare Naz M, Kariman N, Ebadi A, et al. Educational Interventions for Cervical Cancer Screening Behavior of Women: A Systematic Review[J]. Asian Pac J Cancer Prev, 2018, 19(4): 875-884
- [17] Olusola P, Banerjee HN, Philley JV, et al. Human Papilloma Virus-Associated Cervical Cancer and Health Disparities [J]. Cells, 2019, 8(6): 622
- [18] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2018, 68(6): 394-424
- [19] 余艳琴,郝金奇,徐慧芳,等.宫颈癌综合预防和控制的应用和前景 [J].中国医学科学院学报, 2020, 42(4): 535-539
- [20] 毛丽梅,杜晓静,梁红霞,等.HPV 不同亚型在宫颈癌前病变及宫颈 癌中的分布情况[J].现代肿瘤医学, 2019, 27(14): 2571-2574
- [21] Aghamiri S, Talaei S, Roshanzamiri S, et al. Delivery of genome editing tools: A promising strategy for HPV-related cervical malignancy therapy[J]. Expert Opin Drug Deliv, 2020, 17(6): 753-766
- [22] 顾卓伟,邱丽华,高华,等.生殖道感染与宫颈癌及宫颈癌前病变的 相关性研究[J].现代生物医学进展, 2018, 18(23): 4439-4442
- [23] 王萌萌,孔凡虹,宗曾艳,等.15种高危型人乳头瘤病毒核酸检测方 法验证及人群感染情况调查 [J]. 国际检验医学杂志, 2020, 41(1):
- [24] 赵宇倩,赵方辉,胡尚英,等.中国女性人群宫颈人乳头瘤病毒感染 及型别分布的多中心横断面研究[J].中华流行病学杂志, 2015, 36 (12): 1351-1356
- [25] 扈文娟,邓姗丹,张俊梅,等.HPV16/18 型感染宫颈癌患者外周血及 癌组织 PD-1/PD-L1 水平 [J]. 中华医院感染学杂志, 2020, 30(16): 2502-2506
- [26] 郑家凤,周燕.HPV 多重感染与宫颈癌及癌前病变发生、发展的相 关性[J].实用癌症杂志, 2019, 34(7): 1107-1109, 1131
- [27] 刘跃仙. 人乳头瘤病毒多重感染与宫颈癌及癌前病变发生发展的 关系研究[J].中国药物与临床, 2019, 19(4): 634-635
- [28] 徐帅师,牛凤霞,高瑾, 等.河北地区 26385 例女性宫颈细胞 HPV 基 因分型分析[J].中国微生态学杂志, 2018, 30(8): 947-950
- [29] 刘灵燕,郭竹英,胡传玺,等.上海市宝山区 HPV 基因分型的特征分 析[J].蚌埠医学院学报, 2020, 45(3): 384-387
- [30] 孟凡萍,郝坡.渝东北地区 7401 例女性 HPV 感染与基因分型分析 [J].国际检验医学杂志, 2018, 39(8): 986-988