Article Summary
任 丽,王进义,商 澎.微流控芯片在心肌细胞功能研究中的应用[J].现代生物医学进展英文版,2017,17(20):3996-4000.
微流控芯片在心肌细胞功能研究中的应用
Application of Microfluidic Device to Cardiomyocyte Physiological Function Researches
Received:October 23, 2016  Revised:November 18, 2016
DOI:10.13241/j.cnki.pmb.2017.20.046
中文关键词: 微流控芯片  心肌细胞  力学特性  电生理特性  微环境
英文关键词: Microfluidic device  Cardiomyocyte  Mechanical property  Electrophysiological property  Microenvironment
基金项目:中国博士后基金面上项目(2013M532083);西北工业大学基础研究基金项目(3102016ZY041)
Author NameAffiliationE-mail
任 丽 西北工业大学生命学院空间生物实验模拟技术重点实验室 陕西 西安 710072西北农林科技大学动物医学院 陕西 杨凌 712100 renli@nwpu.edu.cn 
王进义 西北农林科技大学理学院 陕西 杨凌 712100西北农林科技大学动物医学院 陕西 杨凌 712100  
商 澎 西北工业大学生命学院空间生物实验模拟技术重点实验室 陕西 西安 710072  
Hits: 456
Download times: 277
中文摘要:
      摘要:心肌细胞是心脏结构和功能的基本单位,约占心脏细胞总数的三分之一,是心脏发育、生理病理研究的重点对象,然而传统的在体和体外研究技术存在诸多困难,无法实现细胞微环境的有效控制和生理功能的实时动态监测,制约着心肌细胞功能研究的快速发展。近年来迅速发展的微加工技术,尤其是微流控芯片技术为心肌细胞功能研究提供了便利。微流控芯片技术具有微米尺度的细胞及其微环境的时空控制功能,有效提高了体外细胞研究的组织相关性,是心肌细胞生理功能和力学特性研究的重要工具,如实时监测单个心肌细胞的代谢活性、表征细胞的电生理特性和力学特性、研究细胞微环境和力学微环境对心肌细胞形态和功能的影响。本文从前述几个方面对微流控芯片在心肌细胞生理功能研究中的应用进行综述和对其应用前景进行了展望。
英文摘要:
      ABSTRACT: Cardiomyocytes, compose approximate one third of all heart cells, are the basic structural and functional components of myocardium and the key objects for heart development, physiology and pathology researches. However, due to the inherent disadvantages of traditional in vivo and in vitro research technologies, it is difficult to effectively control the extracellular microenvironment and real-time monitor cell physiological functions. Thus the quick development of investigating cardiomyocytes functions is restricted. In recent years, microengineering technologies, especially the microfluidics, have presented a series of striking functions in investigating cardiomyocytes properties. Microfluidics has excellent capabilities in conducting spatial and temporal manipulations of both mammalian cells and their microenvironments with high microscale resolution. It is a promising platform for studying the physiological and mechanical properties of cardiomyocyte because of its excellent performance in keeping the cells in a tissue-relevant context in vitro. These advantages effectively extend microfluidic application to cardiac research, including real-time monitoring single cardiomyocyte metabolism, characterization of electrophysiological and mechanical properties, exploring the potential effect of cellular and mechanical microenvironment on cardiomyocyte. In this review, the application of microfluidics in cardiomyocyte physiological function researches described above is outlined, and a further application is explored.
View Full Text   View/Add Comment  Download reader
Close