Article Summary
姚 春,朱丽丹,王凌云,费杨梅,吴光杨.经脐单孔腹腔镜胆囊切除术后切口感染的列线图模型预测价值研究及防治策略分析[J].现代生物医学进展英文版,2022,(7):1319-1323.
经脐单孔腹腔镜胆囊切除术后切口感染的列线图模型预测价值研究及防治策略分析
Predictive Value of Nomogram Model for Incision Infection after Transumbilical Single Hole Laparoscopic Cholecystectomy and Analysis of Prevention and Treatment Strategies
Received:August 22, 2021  Revised:September 17, 2021
DOI:10.13241/j.cnki.pmb.2022.07.026
中文关键词: 经脐单孔腹腔镜胆囊切除术  切口感染  列线图模型  防治策略
英文关键词: After transumbilical single hole laparoscopic cholecystectomy  Incision infection  Nomogram model  Prevention and treatment strategies
基金项目:安徽省公益性技术应用研究联动计划项目(1604f0804036);合肥市卫计委应用医学研究项目(hwk2018zc007)
Author NameAffiliationE-mail
姚 春 合肥市第一人民医院/安徽医科大学第三附属医院微创外科 安徽 合肥 230061 yc022078@163.com 
朱丽丹 合肥市第一人民医院/安徽医科大学第三附属医院微创外科 安徽 合肥 230061  
王凌云 合肥市第一人民医院/安徽医科大学第三附属医院微创外科 安徽 合肥 230061  
费杨梅 合肥市第一人民医院/安徽医科大学第三附属医院微创外科 安徽 合肥 230061  
吴光杨 合肥市第一人民医院/安徽医科大学第三附属医院微创外科 安徽 合肥 230061  
Hits: 693
Download times: 435
中文摘要:
      摘要 目的:探讨经脐单孔腹腔镜胆囊切除术后切口感染的列线图模型预测价值及防治策略。方法:回顾性分析2018年10月-2021年5月合肥市第一人民医院收治的经脐单孔腹腔镜胆囊切除术患者94例的临床资料,根据患者术后是否发生切口感染分为感染组(n=12例)和非感染组(n=82例)。查阅两组病历资料,对患者术后切口感染的可能影响因素进行单因素及多因素Logistic回归分析;引入R软件建立经脐单孔腹腔镜胆囊切除术后切口感染预测模型并绘制列线图模型,获得预测风险值;绘制ROC曲线,分析列线图模型对术后切口感染的预测效能。结果:94例经脐单孔腹腔镜胆囊切除术患者中12例术后切口发生感染,感染率为12.77%。多因素Logistic回归分析结果表明:年龄、手术时间、住院时间、胆囊破裂是经脐单孔腹腔镜胆囊切除术后切口感染发生的影响因素(P<0.05);列线图模型看出:年龄得分为63分,住院时间得分为37.6分,手术时间得分为71.5分,胆囊破裂得分为50分,预测风险值为2.221,ROC曲线下面积为0.832。结论:经脐单孔腹腔镜胆囊切除术后切口感染率较高,且受到的影响因素较多,基于上述影响因素构建的预测模型能获得较高的预测效能,值得推广应用。
英文摘要:
      ABSTRACT Objective: To explore the predictive value and prevention strategy of nomogram model for incision infection after transumbilical single hole laparoscopic cholecystectomy. Methods: The clinical data of 94 patients with after transumbilical single hole laparoscopic cholecystectomy who were admitted to Hefei First People's Hospital from October 2018 to May 2021 were retrospectively analyzed. Patients were divided into infection group (n=12 cases) and non-infection group (n=82 cases) according to whether incision infection occurred after surgery. The medical records of the two groups were consulted, and univariate and multivariate Logistic regression analysis was performed on the possible influencing factors of postoperative incision infection. R software was introduced to establish the prediction model of incision infection after transumbilical single hole laparoscopic cholecystectomy and draw the line graph model to obtain the predicted risk value. The ROC curve was drawn and the predictive efficacy of nomogram model for postoperative incision infection was analyzed. Results: Among 94 cases of transumbilical single hole laparoscopic cholecystectomy, 12 cases had postoperative incision infection, and the infection rate was 12.77%. Multivariate Logistic regression analysis showed that age, operation time, hospital stay and gallbladder rupture were the influencing factors of incision infection after transumbilical single hole laparoscopic cholecystectomy (P<0.05). The nomogram model shows that the age score was 63 scores, the hospital stay score was 37.6 scores, the operation time score was 71.5 scores, the gallbladder rupture score was 50 scores, and the predicted risk value was 2.221, the area under ROC curve is 0.832. Conclusion: The incision infection rate after transumbilical single port laparoscopic cholecystectomy is high, and they are affected by many factors. Therefore, the prediction model constructed based on the above factors can achieve high prediction efficiency, and which is worthy of popularization and application.
View Full Text   View/Add Comment  Download reader
Close