Article Summary
覃勤朴,赵振清,宋莹莹,焦力群,李 黎,康文婷.中性粒细胞计数、D-二聚体及Caprini血栓评分对脑血管狭窄介入术后下肢深静脉血栓形成的预测价值及模型构建[J].现代生物医学进展英文版,2023,(8):1468-1472.
中性粒细胞计数、D-二聚体及Caprini血栓评分对脑血管狭窄介入术后下肢深静脉血栓形成的预测价值及模型构建
Predictive Value and Model Construction of Neutrophil Count, D-Dimer and Caprini Thrombus Score for Lower Extremity Deep Vein Thrombosis after Cerebrovascular Stenosis Intervention Surgery
Received:October 23, 2022  Revised:November 19, 2022
DOI:10.13241/j.cnki.pmb.2023.08.013
中文关键词: 脑血管狭窄  血管内介入治疗  下肢深静脉血栓  中性粒细胞计数  D-二聚体  Caprini血栓评分  预测模型
英文关键词: Cerebrovascular stenosis  Endovascular interventional therapy  Lower extremity deep vein thrombosis  Neutrophil count  D- dimer  Caprini thrombosis score  Prediction model
基金项目:国家自然科学基金项目(82171303)
Author NameAffiliationE-mail
覃勤朴 首都医科大学宣武医院神经外科 北京 100053 qinqinpu1314@163.com 
赵振清 首都医科大学宣武医院神经外科 北京 100053  
宋莹莹 首都医科大学宣武医院神经外科 北京 100053  
焦力群 首都医科大学宣武医院神经外科 北京 100053  
李 黎 首都医科大学宣武医院神经外科 北京 100053  
康文婷 首都医科大学宣武医院神经外科 北京 100053  
Hits: 825
Download times: 408
中文摘要:
      摘要 目的:探讨中性粒细胞计数、D-二聚体及Caprini血栓评分对脑血管狭窄介入术后下肢深静脉血栓形成(DVT)的关系及预测模型构建。方法:选择2021年2月至2022年2月于我院神经外科行血管内介入治疗的281例脑血管狭窄患者,术前检测外周血中性粒细胞计数、D-二聚体,并采用Caprini血栓评分评估患者DVT风险,并根据术后是否发生DVT将患者分为DVT组(31例)和无DVT组(250例)。收集临床资料,采用多因素Logistic回归分析影响脑血管狭窄介入术后DVT的危险因素,构建预测模型,Hosmer-Lemeshow检验预测模型拟合度,受试者工作特征(ROC)曲线分析预测模型对脑血管狭窄介入术后DVT的预测价值。结果:DVT组中性粒细胞计数、D-二聚体、Caprini血栓评分高危和极高危比例高于无DVT组(P<0.05)。且中心静脉导管、卧床时间超过72 h、高中性粒细胞计数、高D-二聚体、Caprini血栓评分分级高危和极高危是脑血管狭窄介入术后DVT的危险因素(P<0.05)。由上述指标构建的预测模型,其预测脑血管狭窄介入术后DVT的曲线下面积AUC(0.95CI)为0.871(0.779~0.938),灵敏度为0.871(27/31),特异度为0.832(208/250)。经Hosmer-Lemeshow检验模型拟合效果良好(P>0.05)。结论:中心静脉导管、卧床时间超过72 h、高中性粒细胞计数、高D-二聚体、Caprini血栓评分分级高危和极高危是脑血管狭窄介入术后DVT的危险因素,根据回归分析构建预测模型对脑血管狭窄介入术后DVT的预测能效较好。
英文摘要:
      ABSTRACT Objective: To investigate the relationship between neutrophil count, D-dimer and Caprini thrombus score on lower extremity deep vein thrombosis (DVT) after cerebrovascular stenosis intervention surgery and the construction of prediction model. Methods: 281 patients with cerebrovascular stenosis who received endovascular interventional therapy in the Department of Neurosurgery of our hospital from February 2021 to February 2022 were selected. Peripheral blood neutrophils count and D-dimer were detected before surgery. The Caprini thrombus score was used to evaluate the risk of DVT, and the patients were divided into DVT group (31 cases) and non-DVT group (250 cases) according to whether or not DVT occurred after surgery. Clinical data were collected, multivariate Logistic regression was used to analyze the risk factors of DVT after cerebrovascular stenosis interventional surgery, and the prediction model was constructed. Hosmer-Lemeshow was used to test the fitting degree of the prediction model, and receiver operating characteristic (ROC) curve was used to analyze the prediction value of the prediction model for DVT after cerebrovascular stenosis interventional surgery. Results: The proportions of neutrophil count, D-dimer and Caprini thrombus score with high risk and very high risk in the DVT group were higher than those in the non-DVT group(P<0.05). Furthermore, central venous catheter, bed duration exceeding 72 h, high neutrophil count, high D-dimer, Caprini thrombus score with high risk and very high risk were risk factors for DVT after cerebrovascular stenosis interventional surgery(P<0.05). According to the prediction model constructed by the above indexes, the AUC (0.95CI) of DVT after erebrovascular stenosis interventional surgery was 0.871 (0.779~0.938), the sensitivity was 0.871(27/31), and the specificity was 0.832(208/250). Hosmer-Lemeshow test showed good fitting effect(P>0.05). Conclusion: Central venous catheter, bed duration exceeding 72 h, high neutrophil count, high D-dimer, Caprini thrombus score with high risk and very high risk are risk factors for DVT after cerebrovascular stenosis interventional surgery. The prediction model built based on regression analysis has good energy efficiency for predicting DVT after cerebrovascular stenosis interventional surgery.
View Full Text   View/Add Comment  Download reader
Close