Article Summary
沙 闯,李忠诚,杨永良,虎建国,白向豆.青海地区非小细胞肺癌患者PLR、NLR、SIRI、HSP90α预测EGFR基因突变的临床价值研究[J].现代生物医学进展英文版,2024,(2):358-362.
青海地区非小细胞肺癌患者PLR、NLR、SIRI、HSP90α预测EGFR基因突变的临床价值研究
Study on the Clinical Value of PLR, NLR, SIRI and HSP90α in Predicting EGFR Gene Mutation in Patients with Non-Small Cell Lung Cancer in Qinghai Area
Received:July 07, 2023  Revised:July 31, 2023
DOI:10.13241/j.cnki.pmb.2024.02.030
中文关键词: 非小细胞肺癌  PLR  NLR  SIRI  HSP90α  EGFR基因突变  预测价值
英文关键词: Non-small cell lung cancer  PLR  NLR  SIRI  HSP90α  EGFR Gene mutation  Predictive value
基金项目:青海省卫生健康委指导性计划课题(2020-wjzdx-47)
Author NameAffiliationE-mail
沙 闯 青海大学附属医院胸外科 青海 西宁 810000 17609712304@163.com 
李忠诚 青海大学附属医院胸外科 青海 西宁 810000  
杨永良 青海大学附属医院胸外科 青海 西宁 810000  
虎建国 青海大学附属医院胸外科 青海 西宁 810000  
白向豆 青海大学附属医院胸外科 青海 西宁 810000  
Hits: 377
Download times: 310
中文摘要:
      摘要 目的:探讨青海地区非小细胞肺癌(NSCLC)患者血小板/淋巴细胞比值(PLR)、中性粒细胞/淋巴细胞比值(NLR)、系统性炎症反应指数(SIRI)、热休克蛋白90α(HSP90α)预测表皮生长因子受体(EGFR)基因突变的临床价值。方法:选择2020年3月至2023年3月青海大学附属医院收治的青海地区135例NSCLC且行EGFR基因检测的患者为研究对象,根据EGFR突变发生情况将患者分为EGFR突变型组(64例)与野生型组(71例)。检测PLR、NLR、SIRI、HSP90α。采用多因素Logistic回归分析EGFR基因突变的影响因素,受试者工作特征(ROC)曲线分析PLR、NLR、SIRI、HSP90α联合应用预测NSCLC患者发生EGFR基因突变的效能。结果:EGFR突变型组血浆HSP90α水平高于野生型组(P<0.05),PLR、NLR、SIRI低于野生型组(P<0.05)。多因素Logistic回归分析显示,女性、腺癌、高HSP90α是NSCLC患者发生EGFR基因突变的危险因素(P<0.05),高PLR、NLR、SIRI是保护因素(P<0.05)。PLR、NLR、SIRI、HSP90α预测NSCLC患者发生EGFR基因突变的曲线下面积为0.783、0.826、0.815、0.811,联合预测曲线下面积为0.932,高于单独预测。结论:青海地区EGFR基因突变的NSCLC患者PLR、NLR、SIRI降低,HSP90α增高。联合PLR、NLR、SIRI,HSP90α对EGFR基因突变的发生具有较高的预测价值。
英文摘要:
      ABSTRACT Objective: To investigate the clinical value of platelet/lymphocyte ratio (PLR), neutrophil/lymphocyte ratio (NLR), systemic inflammatory response index (SIRI) and heat shock protein 90α (HSP90α) in predicting epidermal growth factor receptor (EGFR) gene mutation in patients with non-small cell lung cancer (NSCLC) in Qinghai area. Methods: 135 NSCLC patients who underwent EGFR gene tested in Qinghai area admitted to Affiliated Hospital of Qinghai University from March 2020 to March 2023 were selected as research objects, patients were divided into EGFR mutant group (64 cases) and wild type group (71 cases) according to the occurrence of EGFR mutation. PLR, NLR, SIRI and HSP90α were detected. The influencing factors of EGFR gene mutation wew analyzed by multivariate Logistic regression, the efficacy of PLR, NLR, SIRI and HSP90α in predicting EGFR gene mutation in NSCLC patients were analyzed by receiver operating characteristic (ROC) curve. Results: The plasma HSP90α level in EGFR mutant group was higher than that in wild type group (P<0.05), and PLR, NLR and SIRI were lower than those in wild type group (P<0.05). Multivariate Logistic regression analysis showed that, female, adenocarcinoma and high HSP90α were risk factors for EGFR gene mutation in NSCLC patients (P<0.05), while high PLR, NLR and SIRI were protective factors (P<0.05). The area under the curve of PLR, NLR, SIRI and HSP90α in predicting EGFR gene mutation in NSCLC patients was 0.783, 0.826, 0.815 and 0.811 respectively, the area under the curve of combined prediction was 0.932, which was higher than that of single prediction. Conclusion: The PLR, NLR and SIRI of NSCLC patients with EGFR gene mutation in Qinghai area are decrease, and HSP90α is increase. The combination of PLR, NLR, SIRI and HSP90α has a high predictive value for the occurrence of EGFR gene mutation.
View Full Text   View/Add Comment  Download reader
Close